{"title":"When you come at the kings you best not miss","authors":"Oded Lachish, F. Reidl, Chhaya Trehan","doi":"10.48550/arXiv.2209.12082","DOIUrl":null,"url":null,"abstract":"A tournament is an orientation of a complete graph. We say that a vertex $x$ in a tournament $\\vec T$ controls another vertex $y$ if there exists a directed path of length at most two from $x$ to $y$. A vertex is called a king if it controls every vertex of the tournament. It is well known that every tournament has a king. We follow Shen, Sheng, and Wu (SIAM J. Comput., 2003) in investigating the query complexity of finding a king, that is, the number of arcs in $\\vec T$ one has to know in order to surely identify at least one vertex as a king. The aforementioned authors showed that one always has to query at least $\\Omega(n^{4/3})$ arcs and provided a strategy that queries at most $O(n^{3/2})$. While this upper bound has not yet been improved for the original problem, Biswas et al. (Frontiers in Algorithmics, 2017) proved that with $O(n^{4/3})$ queries one can identify a semi-king, meaning a vertex which controls at least half of all vertices. Our contribution is a novel strategy which improves upon the number of controlled vertices: using $O(n^{4/3} \\operatorname{polylog} n)$ queries, we can identify a $(\\frac{1}{2}+\\frac{2}{17})$-king. To achieve this goal we use a novel structural result for tournaments.","PeriodicalId":175000,"journal":{"name":"Foundations of Software Technology and Theoretical Computer Science","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Software Technology and Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.12082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A tournament is an orientation of a complete graph. We say that a vertex $x$ in a tournament $\vec T$ controls another vertex $y$ if there exists a directed path of length at most two from $x$ to $y$. A vertex is called a king if it controls every vertex of the tournament. It is well known that every tournament has a king. We follow Shen, Sheng, and Wu (SIAM J. Comput., 2003) in investigating the query complexity of finding a king, that is, the number of arcs in $\vec T$ one has to know in order to surely identify at least one vertex as a king. The aforementioned authors showed that one always has to query at least $\Omega(n^{4/3})$ arcs and provided a strategy that queries at most $O(n^{3/2})$. While this upper bound has not yet been improved for the original problem, Biswas et al. (Frontiers in Algorithmics, 2017) proved that with $O(n^{4/3})$ queries one can identify a semi-king, meaning a vertex which controls at least half of all vertices. Our contribution is a novel strategy which improves upon the number of controlled vertices: using $O(n^{4/3} \operatorname{polylog} n)$ queries, we can identify a $(\frac{1}{2}+\frac{2}{17})$-king. To achieve this goal we use a novel structural result for tournaments.