{"title":"ChildPath: Diagnose depression in pre-schoolers based on daily activities","authors":"Logeswaran Kirthika, J. Abeykoon","doi":"10.1109/icac51239.2020.9357230","DOIUrl":null,"url":null,"abstract":"To determine depression in pre-schoolers and validation of identifying depression based on daily activities. A comprehensive literature search, interviews with accredited mental health practitioners and a survey was conducted to validate the background aspects and existing diagnosis theories to map out based on daily activities. The results of the evaluation suggest a gap around diagnosis of depression in pre-schoolers due to lack of awareness and its distinctive nature to adult depression. This establishes a need for depression status calculation mechanism based on analysis of daily activities using machine learning to examine behaviour and speech patterns. Further, rule-based machine learning, will be implemented to offer personalized treatment plans if diagnosed with a status of depression.","PeriodicalId":253040,"journal":{"name":"2020 2nd International Conference on Advancements in Computing (ICAC)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Advancements in Computing (ICAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icac51239.2020.9357230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To determine depression in pre-schoolers and validation of identifying depression based on daily activities. A comprehensive literature search, interviews with accredited mental health practitioners and a survey was conducted to validate the background aspects and existing diagnosis theories to map out based on daily activities. The results of the evaluation suggest a gap around diagnosis of depression in pre-schoolers due to lack of awareness and its distinctive nature to adult depression. This establishes a need for depression status calculation mechanism based on analysis of daily activities using machine learning to examine behaviour and speech patterns. Further, rule-based machine learning, will be implemented to offer personalized treatment plans if diagnosed with a status of depression.