The correlation between parity and quadratic polynomials mod 3

Frederic Green
{"title":"The correlation between parity and quadratic polynomials mod 3","authors":"Frederic Green","doi":"10.1109/CCC.2002.1004341","DOIUrl":null,"url":null,"abstract":"We prove exponentially small upper bounds on the correlation between parity and quadratic polynomials mod 3. One corollary of this is that in order to compute parity, circuits consisting of a threshold gate at the top, mod 3 gates in the middle, and AND gates of fan-in two at the inputs must be of size 2/sup /spl Omega/(n)/. This is the first result of this type for general mod subcircuits with ANDs of fan-in greater than 1. This yields an exponential improvement over a recent result of Alon and Beigel (2001). The proof uses a novel inductive estimate of the relevant exponential sums introduced by Cai et al. (1996). The exponential sum bounds are tight.","PeriodicalId":193513,"journal":{"name":"Proceedings 17th IEEE Annual Conference on Computational Complexity","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 17th IEEE Annual Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2002.1004341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

We prove exponentially small upper bounds on the correlation between parity and quadratic polynomials mod 3. One corollary of this is that in order to compute parity, circuits consisting of a threshold gate at the top, mod 3 gates in the middle, and AND gates of fan-in two at the inputs must be of size 2/sup /spl Omega/(n)/. This is the first result of this type for general mod subcircuits with ANDs of fan-in greater than 1. This yields an exponential improvement over a recent result of Alon and Beigel (2001). The proof uses a novel inductive estimate of the relevant exponential sums introduced by Cai et al. (1996). The exponential sum bounds are tight.
宇称与二次多项式模3的关系
我们证明了奇偶性与二次多项式模3相关的指数小上界。这样做的一个推论是,为了计算奇偶性,由顶部的阈值门、中间的mod 3门和输入端的扇入与门组成的电路的大小必须为2/sup /spl ω /(n)/。这是这种类型的第一个结果,一般模子电路的and扇入大于1。这比Alon和Beigel(2001)最近的结果产生了指数级的改进。该证明使用Cai等人(1996)引入的对相关指数和的一种新的归纳估计。指数和的边界很紧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信