Multidimensional Matrix Algebra Versus Tensor Algebra or μ > 0

E. Goncharov, P. Iljin, V. Munerman
{"title":"Multidimensional Matrix Algebra Versus Tensor Algebra or μ > 0","authors":"E. Goncharov, P. Iljin, V. Munerman","doi":"10.1109/EIConRus49466.2020.9039478","DOIUrl":null,"url":null,"abstract":"The paper compares of the multidimensional matrix algebra and the tensor algebra. It is shown that tensor algebra operations are realized in the multidimensional matrix algebra more efficiently. Examples are given to illustrate this fact. It is concluded that the multidimensional matrix algebra is a natural generalization of the tensor algebra. It is shown how the operation of the multiplication of multidimensional matrices is parallelized. It is said which data processing tasks are effectively formalized and implemented in the multidimensional matrix algebra. The paper was written in order to make the algebra of multidimensional matrices accessible to many software developers.","PeriodicalId":333365,"journal":{"name":"2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIConRus49466.2020.9039478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper compares of the multidimensional matrix algebra and the tensor algebra. It is shown that tensor algebra operations are realized in the multidimensional matrix algebra more efficiently. Examples are given to illustrate this fact. It is concluded that the multidimensional matrix algebra is a natural generalization of the tensor algebra. It is shown how the operation of the multiplication of multidimensional matrices is parallelized. It is said which data processing tasks are effectively formalized and implemented in the multidimensional matrix algebra. The paper was written in order to make the algebra of multidimensional matrices accessible to many software developers.
多维矩阵代数与张量代数或μ > 0
本文对多维矩阵代数和张量代数进行了比较。结果表明,张量代数运算在多维矩阵代数中更有效地实现。文中给出了一些例子来说明这一事实。得出多维矩阵代数是张量代数的自然推广。它显示了多维矩阵的乘法运算是如何并行化的。在多维矩阵代数中,哪些数据处理任务是有效形式化和实现的。本文的目的是使许多软件开发人员能够理解多维矩阵的代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信