{"title":"Evaluating and comparing the performance of DYMO and OLSR in MANETs and in VANETs","authors":"S. Sagar, J. Saqib, A. Bibi, N. Javaid","doi":"10.1109/INMIC.2011.6151505","DOIUrl":null,"url":null,"abstract":"This paper evaluates and compares the performance of two routing protocols, one is reactive, Dynamic MANET On-Demand (DYMO) and other is proactive, Optimized Link State Routing (OLSR) in Mobile Ad-hoc Networks (MANETs) and Vehicular Ad-hoc Networks (VANETs). Performance of these protocols is analyzed using three performance metrics; Packet Delivery Ratio, Normalized Routing Overhead and End-to-End Delay against varying scalabilities of nodes. We perform these simulations with NS-2 using TwoRayGround propagation model. The SUMO simulator is used to generate a random mobility pattern for VANETs. From the extensive simulations, we observe that DYMO performs better than OLSR for both VANETs and MANETs at the cost of delay. Moreover, DYMO performs better in VANETs as compared to MANETs.","PeriodicalId":207616,"journal":{"name":"2011 IEEE 14th International Multitopic Conference","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 14th International Multitopic Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC.2011.6151505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
This paper evaluates and compares the performance of two routing protocols, one is reactive, Dynamic MANET On-Demand (DYMO) and other is proactive, Optimized Link State Routing (OLSR) in Mobile Ad-hoc Networks (MANETs) and Vehicular Ad-hoc Networks (VANETs). Performance of these protocols is analyzed using three performance metrics; Packet Delivery Ratio, Normalized Routing Overhead and End-to-End Delay against varying scalabilities of nodes. We perform these simulations with NS-2 using TwoRayGround propagation model. The SUMO simulator is used to generate a random mobility pattern for VANETs. From the extensive simulations, we observe that DYMO performs better than OLSR for both VANETs and MANETs at the cost of delay. Moreover, DYMO performs better in VANETs as compared to MANETs.