A feature-based CAD representation enabling case-based planning across multiple manufacturing applications

K. Barber
{"title":"A feature-based CAD representation enabling case-based planning across multiple manufacturing applications","authors":"K. Barber","doi":"10.1109/ISIC.1995.525081","DOIUrl":null,"url":null,"abstract":"Human programmers integrate knowledge about the designed part when programming a robot or a vision system. A human is required to reason about the relationship between the designed part geometry and the particular application requirements. The OOPAC representation provides the ability to plan different applications using the same part design. The representation provides an extendibility not found in current feature-based planning system where macros incorporate the definition of feature geometry and application-specific information. The OOPAC representation enables the automated OOPAC planning system to reason about relationships between multiple constraints imposed by process parameters, workspace environment, part design, and available tools, sensors, and machines (robots). This paper primarily focused on the relationship between application plans and part design. The OOPAC KB representation facilitates the capability of the OOPAC planning system to reason about constraints imposed on the application specification by various levels of abstraction in the feature geometry (part, feature, feature face, edge, vertex).","PeriodicalId":219623,"journal":{"name":"Proceedings of Tenth International Symposium on Intelligent Control","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Tenth International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1995.525081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Human programmers integrate knowledge about the designed part when programming a robot or a vision system. A human is required to reason about the relationship between the designed part geometry and the particular application requirements. The OOPAC representation provides the ability to plan different applications using the same part design. The representation provides an extendibility not found in current feature-based planning system where macros incorporate the definition of feature geometry and application-specific information. The OOPAC representation enables the automated OOPAC planning system to reason about relationships between multiple constraints imposed by process parameters, workspace environment, part design, and available tools, sensors, and machines (robots). This paper primarily focused on the relationship between application plans and part design. The OOPAC KB representation facilitates the capability of the OOPAC planning system to reason about constraints imposed on the application specification by various levels of abstraction in the feature geometry (part, feature, feature face, edge, vertex).
基于特征的CAD表示,支持跨多个制造应用程序的基于案例的规划
人类程序员在为机器人或视觉系统编程时,会整合有关被设计部件的知识。需要一个人来推理设计的零件几何形状与特定应用需求之间的关系。OOPAC表示提供了使用相同部件设计来规划不同应用程序的能力。在当前的基于特征的规划系统中,宏包含了特征几何的定义和特定于应用程序的信息,这种表示提供了一种可扩展性。OOPAC表示使自动化的OOPAC计划系统能够推断由过程参数、工作空间环境、零件设计以及可用工具、传感器和机器(机器人)所施加的多个约束之间的关系。本文主要研究了应用方案与零件设计之间的关系。OOPAC KB表示简化了OOPAC规划系统的能力,使其能够推断出通过特征几何(部分、特征、特征面、边缘、顶点)中的各种抽象级别强加于应用程序规范的约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信