An adaptive neural network model for distinguishing line- and edge detection from texture segregation

M. V. Van Hulle, T. Tollenaere
{"title":"An adaptive neural network model for distinguishing line- and edge detection from texture segregation","authors":"M. V. Van Hulle, T. Tollenaere","doi":"10.1109/NNSP.1992.253673","DOIUrl":null,"url":null,"abstract":"The authors consider an important paradigm in vision: distinguishing object contours or edges (and lines) from object surface textures. To accomplish this, an artificial neural network model, called the EDANN model, is used for both texture segregation and line and edge detection starting from a common bank of spatial filters. The model provides different representations of a retinal image in such a way that different actions and decisions about the presence of objects in the visual scene can be undertaken in a further stage. Three possible cases of distinguishing luminance-defined lines and edges from noise textures are considered.<<ETX>>","PeriodicalId":438250,"journal":{"name":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1992.253673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The authors consider an important paradigm in vision: distinguishing object contours or edges (and lines) from object surface textures. To accomplish this, an artificial neural network model, called the EDANN model, is used for both texture segregation and line and edge detection starting from a common bank of spatial filters. The model provides different representations of a retinal image in such a way that different actions and decisions about the presence of objects in the visual scene can be undertaken in a further stage. Three possible cases of distinguishing luminance-defined lines and edges from noise textures are considered.<>
一种自适应神经网络模型,用于从纹理分离中区分线和边缘检测
作者考虑了视觉中的一个重要范例:从物体表面纹理中区分物体轮廓或边缘(和线条)。为了实现这一目标,一种称为EDANN模型的人工神经网络模型被用于纹理分离和从一组共同的空间滤波器开始的线和边缘检测。该模型以这样一种方式提供视网膜图像的不同表示,即关于视觉场景中物体存在的不同动作和决定可以在进一步的阶段进行。考虑了从噪声纹理中区分亮度定义的线和边缘的三种可能情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信