Enhanced methods for Evolution in-Materio Processors

Benedict. A. H. Jones, N. A. Moubayed, D. Zeze, C. Groves
{"title":"Enhanced methods for Evolution in-Materio Processors","authors":"Benedict. A. H. Jones, N. A. Moubayed, D. Zeze, C. Groves","doi":"10.1109/ICRC53822.2021.00026","DOIUrl":null,"url":null,"abstract":"Evolution-in-Materio (EiM) is an unconventional computing paradigm, which uses an Evolutionary Algorithm (EA) to configure a material's parameters so that it can perform a computational task. While EiM processors show promise, slow manufacturing and physical experimentation hinder their development. Simulations based on a physical model were used to efficiently investigate three specific enhancements to EiM processors which operate as classifiers. Firstly, an adapted Differential Evolution algorithm that includes batching and a validation dataset. This allows more generational updates and a validation metric which could tune hyper-parameters. Secondly, the introduction of Binary Cross Entropy as an objective function for the EA, a continuous fitness metric with several advantages over the commonly used classification error objective function. Finally, the use of regression to quickly assess the material processor's output states and produce an optimal readout layer, a significant improvement over fixed or evolved interpretation schemes which can ‘hide’ the true performance of a material processor. Together these enhancements provide guidance on the production of more flexible, better performing, and robust EiM processors.","PeriodicalId":139766,"journal":{"name":"2021 International Conference on Rebooting Computing (ICRC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC53822.2021.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Evolution-in-Materio (EiM) is an unconventional computing paradigm, which uses an Evolutionary Algorithm (EA) to configure a material's parameters so that it can perform a computational task. While EiM processors show promise, slow manufacturing and physical experimentation hinder their development. Simulations based on a physical model were used to efficiently investigate three specific enhancements to EiM processors which operate as classifiers. Firstly, an adapted Differential Evolution algorithm that includes batching and a validation dataset. This allows more generational updates and a validation metric which could tune hyper-parameters. Secondly, the introduction of Binary Cross Entropy as an objective function for the EA, a continuous fitness metric with several advantages over the commonly used classification error objective function. Finally, the use of regression to quickly assess the material processor's output states and produce an optimal readout layer, a significant improvement over fixed or evolved interpretation schemes which can ‘hide’ the true performance of a material processor. Together these enhancements provide guidance on the production of more flexible, better performing, and robust EiM processors.
Evolution in-Materio处理器的增强方法
材料进化(EiM)是一种非常规的计算范式,它使用进化算法(EA)来配置材料的参数,使其能够执行计算任务。虽然EiM处理器显示出了希望,但缓慢的制造和物理实验阻碍了它们的发展。基于物理模型的仿真有效地研究了EiM处理器作为分类器的三种特定增强。首先,提出了一种改进的差分进化算法,该算法包括批处理和验证数据集。这允许更多的分代更新和一个可以调优超参数的验证度量。其次,引入二元交叉熵作为EA的目标函数,这是一种连续适应度度量,与常用的分类误差目标函数相比具有许多优点。最后,使用回归来快速评估材料处理器的输出状态并产生最佳读出层,这是对固定或进化的解释方案的重大改进,这些方案可以“隐藏”材料处理器的真实性能。这些增强为生产更灵活、性能更好、更健壮的EiM处理器提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信