MIMO radar using sparse sensing: A weighted sparse Bayesian learning (WSBL) approach

Ahmed Al Hilli, A. Petropulu
{"title":"MIMO radar using sparse sensing: A weighted sparse Bayesian learning (WSBL) approach","authors":"Ahmed Al Hilli, A. Petropulu","doi":"10.1109/ACSSC.2017.8335141","DOIUrl":null,"url":null,"abstract":"A colocated Multiple-Input Multiple-Output (MIMO) radar system is studied, in which the receive antennas implement sparse sensing and then forward their compressively obtained samples to a fusion center. Assuming sparsely distributed targets in the direction-of-arrival (DOA) space, the fusion center can estimate the targets by formulating and solving a sparse signal recovery problem. In this paper, we propose a weighted Sparse Bayesian Learning (WSBL) approach for target DOA estimation. Using a low resolution estimate of the sparse vector, the proposed approach assigns different weights to different entries of the sparse vector, giving more importance to some entries over others. Subsequently, the weighted sparse signal recovery problem is solved along the lines of the Sparse Bayesian Learning (SBL) framework. The proposed approach shows robustness for increased number of sources, and lower SNR as compared to SBL and the Dantzig selector approach.","PeriodicalId":296208,"journal":{"name":"2017 51st Asilomar Conference on Signals, Systems, and Computers","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 51st Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2017.8335141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A colocated Multiple-Input Multiple-Output (MIMO) radar system is studied, in which the receive antennas implement sparse sensing and then forward their compressively obtained samples to a fusion center. Assuming sparsely distributed targets in the direction-of-arrival (DOA) space, the fusion center can estimate the targets by formulating and solving a sparse signal recovery problem. In this paper, we propose a weighted Sparse Bayesian Learning (WSBL) approach for target DOA estimation. Using a low resolution estimate of the sparse vector, the proposed approach assigns different weights to different entries of the sparse vector, giving more importance to some entries over others. Subsequently, the weighted sparse signal recovery problem is solved along the lines of the Sparse Bayesian Learning (SBL) framework. The proposed approach shows robustness for increased number of sources, and lower SNR as compared to SBL and the Dantzig selector approach.
基于稀疏感知的MIMO雷达:一种加权稀疏贝叶斯学习方法
研究了一种多输入多输出(MIMO)雷达系统,在该系统中,接收天线实现稀疏感知,然后将压缩得到的样本转发到融合中心。假设目标在到达方向(DOA)空间中稀疏分布,融合中心通过制定和求解稀疏信号恢复问题来估计目标。在本文中,我们提出了一种加权稀疏贝叶斯学习(WSBL)方法用于目标DOA估计。该方法利用稀疏向量的低分辨率估计,对稀疏向量的不同条目赋予不同的权重,使某些条目比其他条目更重要。与SBL和Dantzig选择器方法相比,所提出的方法对增加的源数量和较低的信噪比具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信