Lung cancer pathology discrimination techniques using time series analysis

T. Farrahi, G. Giakos, T. Quang, S. Shrestha, A. Deshpande, C. Narayan, Dimitrios Alexios Karras
{"title":"Lung cancer pathology discrimination techniques using time series analysis","authors":"T. Farrahi, G. Giakos, T. Quang, S. Shrestha, A. Deshpande, C. Narayan, Dimitrios Alexios Karras","doi":"10.1109/IST.2013.6729667","DOIUrl":null,"url":null,"abstract":"The goal of this study is to discover, analyze, compare, and interpret diffused reflectance polarimetric signatures from lung cancer cells through time series analysis techniques, by using recently invented efficient polarimetric backscattering detection techniques. Specifically, different time series analyses, relying on linear and generalized linear modeling, have been investigated, with special emphasis on the Granger test for the time series. The experimental results indicate that statistically enhanced discrimination between normal and different types of lung cancer cells and stages can be achieved based on the pairwise comparisons of the time series diffused reflectance signal intensities and depolarization properties of the cells.","PeriodicalId":448698,"journal":{"name":"2013 IEEE International Conference on Imaging Systems and Techniques (IST)","volume":"63 CN_suppl_1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Imaging Systems and Techniques (IST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST.2013.6729667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The goal of this study is to discover, analyze, compare, and interpret diffused reflectance polarimetric signatures from lung cancer cells through time series analysis techniques, by using recently invented efficient polarimetric backscattering detection techniques. Specifically, different time series analyses, relying on linear and generalized linear modeling, have been investigated, with special emphasis on the Granger test for the time series. The experimental results indicate that statistically enhanced discrimination between normal and different types of lung cancer cells and stages can be achieved based on the pairwise comparisons of the time series diffused reflectance signal intensities and depolarization properties of the cells.
肺癌病理鉴别技术的时间序列分析
本研究的目的是通过时间序列分析技术,利用最近发明的高效偏振后向散射检测技术,发现、分析、比较和解释肺癌细胞的漫反射偏振特征。具体来说,研究了不同的时间序列分析,依赖于线性和广义线性模型,特别强调了时间序列的格兰杰检验。实验结果表明,通过时间序列扩散反射信号强度和细胞退极化特性的两两比较,可以在统计学上增强正常和不同类型、不同分期肺癌细胞的区分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信