Recurrent convolution neural networks for classification of protein-protein interaction articles from biomedical literature

Sabenabanu Abdulkadhar, Gurusamy Murugesan, J. Natarajan
{"title":"Recurrent convolution neural networks for classification of protein-protein interaction articles from biomedical literature","authors":"Sabenabanu Abdulkadhar, Gurusamy Murugesan, J. Natarajan","doi":"10.1109/ICRCICN.2017.8234505","DOIUrl":null,"url":null,"abstract":"Text classification (TC) is a task that assigns a text to one or more classes and predefined categories. Constructing text classifiers with high accuracy is a vital task in biomedical field, given the wealth of information hidden in unlabelled documents. Because of large feature spaces, traditionally discriminative approaches, such as logistic regression and support vector machines with n-gram and semantic features have been utilizedfor biomedical text classification. In this study, we propose Recurrent Convolution Neural Networks (RCNN) based automated technique for classifying protein-protein interaction (PPI) articles. In RCNN model we utilized a recurrent structure to detain the contextual information from word embedding features. Max pooling layer was configured to extract important semantic keywords from the text. We evaluated our approach on two benchmark PPI datasets BioCreative II and BioCreative III. An experimental results show that RCNN based protein-protein interaction classification approach performs better than other state of the art approaches.","PeriodicalId":166298,"journal":{"name":"2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","volume":"37 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRCICN.2017.8234505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Text classification (TC) is a task that assigns a text to one or more classes and predefined categories. Constructing text classifiers with high accuracy is a vital task in biomedical field, given the wealth of information hidden in unlabelled documents. Because of large feature spaces, traditionally discriminative approaches, such as logistic regression and support vector machines with n-gram and semantic features have been utilizedfor biomedical text classification. In this study, we propose Recurrent Convolution Neural Networks (RCNN) based automated technique for classifying protein-protein interaction (PPI) articles. In RCNN model we utilized a recurrent structure to detain the contextual information from word embedding features. Max pooling layer was configured to extract important semantic keywords from the text. We evaluated our approach on two benchmark PPI datasets BioCreative II and BioCreative III. An experimental results show that RCNN based protein-protein interaction classification approach performs better than other state of the art approaches.
用于生物医学文献中蛋白质-蛋白质相互作用文章分类的递归卷积神经网络
文本分类(TC)是将文本分配给一个或多个类和预定义类别的任务。考虑到未标记文档中隐藏的大量信息,构建高精度文本分类器是生物医学领域的一项重要任务。由于特征空间大,传统的判别方法,如逻辑回归和具有n-gram和语义特征的支持向量机已被用于生物医学文本分类。在这项研究中,我们提出了基于递归卷积神经网络(RCNN)的蛋白质-蛋白质相互作用(PPI)文章自动分类技术。在RCNN模型中,我们利用循环结构来保留词嵌入特征中的上下文信息。配置最大池化层,从文本中提取重要的语义关键词。我们在两个基准PPI数据集BioCreative II和BioCreative III上评估了我们的方法。实验结果表明,基于RCNN的蛋白质-蛋白质相互作用分类方法比现有的分类方法性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信