Smooth interpolation of orientations with angular velocity constraints using quaternions

A. Barr, B. L. Currin, Steve Gabriel, J. Hughes
{"title":"Smooth interpolation of orientations with angular velocity constraints using quaternions","authors":"A. Barr, B. L. Currin, Steve Gabriel, J. Hughes","doi":"10.1145/133994.134086","DOIUrl":null,"url":null,"abstract":"In this paper we present methods to smoothly interpolate \norientations, given N rotational key frames of an \nobject along a trajectory. The methods allow the user \nto impose constraints on the rotational path, such as \nthe angular velocity at the endpoints of the trajectory. \n \nWe convert the rotations to quaternions, and then \nspline in that non-Euclidean space. Analogous to the \nmathematical foundations of flat-space spline curves, \nwe minimize the net “tangential acceleration” of the \nquaternion path. We replace the flat-space quantities \nwith curved-space quantities, and numerically solve the \nresulting equation with finite difference and optimization \nmethods.","PeriodicalId":196837,"journal":{"name":"Proceedings of the 19th annual conference on Computer graphics and interactive techniques","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"183","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th annual conference on Computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/133994.134086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 183

Abstract

In this paper we present methods to smoothly interpolate orientations, given N rotational key frames of an object along a trajectory. The methods allow the user to impose constraints on the rotational path, such as the angular velocity at the endpoints of the trajectory. We convert the rotations to quaternions, and then spline in that non-Euclidean space. Analogous to the mathematical foundations of flat-space spline curves, we minimize the net “tangential acceleration” of the quaternion path. We replace the flat-space quantities with curved-space quantities, and numerically solve the resulting equation with finite difference and optimization methods.
使用四元数的角速度约束的方向平滑插值
在本文中,我们提出了平滑插值方向的方法,给定沿轨迹的N个旋转关键帧的对象。该方法允许用户对旋转路径施加约束,例如在轨迹端点处的角速度。我们将旋转转换为四元数,然后在非欧几里得空间中进行样条。与平面空间样条曲线的数学基础类似,我们最小化四元数路径的净“切向加速度”。我们将平面空间的量替换为弯曲空间的量,用有限差分和优化方法对得到的方程进行数值求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信