C. Rougier, J. Meunier, Alain St-Arnaud, J. Rousseau
{"title":"Fall Detection from Human Shape and Motion History Using Video Surveillance","authors":"C. Rougier, J. Meunier, Alain St-Arnaud, J. Rousseau","doi":"10.1109/AINAW.2007.181","DOIUrl":null,"url":null,"abstract":"Nowadays, Western countries have to face the growing population of seniors. New technologies can help people stay at home by providing a secure environment and improving their quality of life. The use of computer vision systems offers a new promising solution to analyze people behavior and detect some unusual events. In this paper, we propose a new method to detect falls, which are one of the greatest risk for seniors living alone. Our approach is based on a combination of motion history and human shape variation. Our algorithm provides promising results on video sequences of daily activities and simulated falls.","PeriodicalId":338799,"journal":{"name":"21st International Conference on Advanced Information Networking and Applications Workshops (AINAW'07)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"357","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st International Conference on Advanced Information Networking and Applications Workshops (AINAW'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINAW.2007.181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 357
Abstract
Nowadays, Western countries have to face the growing population of seniors. New technologies can help people stay at home by providing a secure environment and improving their quality of life. The use of computer vision systems offers a new promising solution to analyze people behavior and detect some unusual events. In this paper, we propose a new method to detect falls, which are one of the greatest risk for seniors living alone. Our approach is based on a combination of motion history and human shape variation. Our algorithm provides promising results on video sequences of daily activities and simulated falls.