Few-Shot Learning by Integrating Spatial and Frequency Representation

Xiangyu Chen, Guanghui Wang
{"title":"Few-Shot Learning by Integrating Spatial and Frequency Representation","authors":"Xiangyu Chen, Guanghui Wang","doi":"10.1109/CRV52889.2021.00011","DOIUrl":null,"url":null,"abstract":"Human beings can recognize new objects with only a few labeled examples, however, few-shot learning remains a challenging problem for machine learning systems. Most previous algorithms in few-shot learning only utilize spatial information of the images. In this paper, we propose to integrate the frequency information into the learning model to boost the discrimination ability of the system. We employ Discrete Cosine Transformation (DCT) to generate the frequency representation, then, integrate the features from both the spatial domain and frequency domain for classification. The proposed strategy and its effectiveness are validated with different backbones, datasets, and algorithms. Extensive experiments demonstrate that the frequency information is complementary to the spatial representations in few-shot classification. The classification accuracy is boosted significantly by integrating features from both the spatial and frequency domains in different few-shot learning tasks.","PeriodicalId":413697,"journal":{"name":"2021 18th Conference on Robots and Vision (CRV)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 18th Conference on Robots and Vision (CRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV52889.2021.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Human beings can recognize new objects with only a few labeled examples, however, few-shot learning remains a challenging problem for machine learning systems. Most previous algorithms in few-shot learning only utilize spatial information of the images. In this paper, we propose to integrate the frequency information into the learning model to boost the discrimination ability of the system. We employ Discrete Cosine Transformation (DCT) to generate the frequency representation, then, integrate the features from both the spatial domain and frequency domain for classification. The proposed strategy and its effectiveness are validated with different backbones, datasets, and algorithms. Extensive experiments demonstrate that the frequency information is complementary to the spatial representations in few-shot classification. The classification accuracy is boosted significantly by integrating features from both the spatial and frequency domains in different few-shot learning tasks.
结合空间和频率表示的少镜头学习
人类只需要几个标记的例子就可以识别新物体,然而,对于机器学习系统来说,少射学习仍然是一个具有挑战性的问题。以往的少镜头学习算法大多只利用图像的空间信息。在本文中,我们提出将频率信息整合到学习模型中,以提高系统的识别能力。我们使用离散余弦变换(DCT)生成频率表示,然后将空间域和频率域的特征进行整合进行分类。用不同的主干、数据集和算法验证了所提出的策略及其有效性。大量的实验表明,在小样本分类中,频率信息与空间表征是互补的。在不同的小样本学习任务中,通过整合空间域和频率域的特征,大大提高了分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信