Lower Bounds for Existential Pebble Games and k-Consistency Tests

Christoph Berkholz
{"title":"Lower Bounds for Existential Pebble Games and k-Consistency Tests","authors":"Christoph Berkholz","doi":"10.1109/LICS.2012.14","DOIUrl":null,"url":null,"abstract":"The existential k-pebble game characterizes the expressive power of the existential-positive k-variable fragment of first-order logic on finite structures. The winner of the existential k-pebble game on two given finite structures can easily be determined in polynomial time, where the degree of the polynomial is linear in k. We show that this linear dependence on the parameter k is necessary by proving an unconditional polynomial lower bound for determining the winner in the existential k-pebble game on finite structures. Establishing strong k-consistency is a well-known heuristic for solving the constraint satisfaction problem (CSP). By the game characterization of Kolaitis and Vardi our result implies a lower bound on every algorithm that decides if strong k-consistency can be established for a given CSP-instance.","PeriodicalId":407972,"journal":{"name":"2012 27th Annual IEEE Symposium on Logic in Computer Science","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 27th Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2012.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The existential k-pebble game characterizes the expressive power of the existential-positive k-variable fragment of first-order logic on finite structures. The winner of the existential k-pebble game on two given finite structures can easily be determined in polynomial time, where the degree of the polynomial is linear in k. We show that this linear dependence on the parameter k is necessary by proving an unconditional polynomial lower bound for determining the winner in the existential k-pebble game on finite structures. Establishing strong k-consistency is a well-known heuristic for solving the constraint satisfaction problem (CSP). By the game characterization of Kolaitis and Vardi our result implies a lower bound on every algorithm that decides if strong k-consistency can be established for a given CSP-instance.
存在卵石游戏的下界与k-一致性检验
存在k-卵石博弈表征了有限结构上一阶逻辑的存在-正k变量片段的表达能力。在给定的两个有限结构上存在k-卵石博弈的赢家可以很容易地在多项式时间内确定,其中多项式的程度在k中是线性的。我们通过证明在有限结构上存在k-卵石博弈中确定赢家的无条件多项式下界来证明这种对参数k的线性依赖是必要的。建立强k-一致性是解决约束满足问题(CSP)的一个著名的启发式方法。通过Kolaitis和Vardi的博弈特征,我们的结果暗示了每个算法的下界,该下界决定是否可以为给定的csp实例建立强k-一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信