Simulating two pushdown stores by one tape in O(n1.5v) time

Ming Li
{"title":"Simulating two pushdown stores by one tape in O(n1.5v) time","authors":"Ming Li","doi":"10.1109/SFCS.1985.50","DOIUrl":null,"url":null,"abstract":"Based on two graph separator theorems, we present two unexpected upper bounds and resolve several open problems for on-line computations. (1) 1 tape nondeterministic machines can simulate 2 pushdown stores in time O(n1.5√logn) (true for both on-line and off-line machines). Together with the Ω(n1.5/√logn) lower bound, this solves the open problem 1 in [DGPR] for the 1 tape vs. 2 pushdown case. It also disproves the commonly conjectured Ω(n2) lower bound. (2) The languages defined by Maass and Freivalds, aimed to obtain optimal lower bound for 1 tape nondeterministic machines, can be accepted in O(n2loglogn√logn) and O(n1.5√logn) time by a 1 tape TM, respectively. (3) 3 pushdown stores are better than 2 pushdown stores. This answers a rather old open problem by Book and Greibach, and Duris and Galil. An Ω(n4/3/loge n) lower bound is also obtained. (4) 1 tape can nondeterministically simulate 1 queue in O(n1.5/√logn) time. This disproves the conjectured Ω(n2) lower bound. Also 1 queue can simulate 2 pushdowns in time O(n1.5√logn).","PeriodicalId":296739,"journal":{"name":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1985.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Based on two graph separator theorems, we present two unexpected upper bounds and resolve several open problems for on-line computations. (1) 1 tape nondeterministic machines can simulate 2 pushdown stores in time O(n1.5√logn) (true for both on-line and off-line machines). Together with the Ω(n1.5/√logn) lower bound, this solves the open problem 1 in [DGPR] for the 1 tape vs. 2 pushdown case. It also disproves the commonly conjectured Ω(n2) lower bound. (2) The languages defined by Maass and Freivalds, aimed to obtain optimal lower bound for 1 tape nondeterministic machines, can be accepted in O(n2loglogn√logn) and O(n1.5√logn) time by a 1 tape TM, respectively. (3) 3 pushdown stores are better than 2 pushdown stores. This answers a rather old open problem by Book and Greibach, and Duris and Galil. An Ω(n4/3/loge n) lower bound is also obtained. (4) 1 tape can nondeterministically simulate 1 queue in O(n1.5/√logn) time. This disproves the conjectured Ω(n2) lower bound. Also 1 queue can simulate 2 pushdowns in time O(n1.5√logn).
在0 (n1.5v)的时间内,通过一个磁带模拟两个下推存储
基于两个图分隔定理,给出了两个意想不到的上界,并解决了在线计算中的几个开放问题。(1) 1个磁带不确定性机器可以在时间O(n1.5√logn)内模拟2个下推存储(在线和离线机器都为真)。与Ω(n1.5/√logn)下界一起,这解决了[DGPR]中1磁带对2下推情况下的开放问题1。它也反驳了通常猜测的Ω(n2)下界。(2) Maass和Freivalds定义的语言,旨在获得1磁带不确定性机器的最优下界,可分别在O(n2loglog√logn)和O(n1.5√logn)时间内被1磁带TM接受。(3) 3个下推门店优于2个下推门店。这回答了布克、格雷巴赫、杜里斯和加利尔提出的一个相当古老的开放性问题。得到Ω(n4/3/loge n)下界。(4) 1个磁带可以在O(n1.5/√logn)时间内不确定性地模拟1个队列。这反驳了猜想的Ω(n2)下界。另外,一个队列可以在时间O(n1.5√logn)内模拟2次下推。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信