{"title":"Fake News Detection with Hybrid CNN-LSTM","authors":"Kian Long Tan, Chin Poo Lee, K. Lim","doi":"10.1109/ICoICT52021.2021.9527469","DOIUrl":null,"url":null,"abstract":"In the past decades, information and communication technology has developed rapidly. Therefore, social media has become the main platform for people to share and spread information to others. Although social media has brought a lot of convenience to people, fake news also spread more rapidly than before. This situation has brought a destructive impact to people. In view of this, we propose a hybrid model of Convolutional Neural Network and Long Short-Term Memory for fake news detection. The Convolutional Neural Network model plays the role of extracting representative high-level sequence features whereas the Long Short-Term Memory model encodes the long-term dependencies of the sequence features. Two regularization techniques are applied to reduce the model complexity and to mitigate the overfitting problem. The empirical results demonstrate that the proposed Convolutional Neural Network -Long Short-Term Memory model yields the highest F1-score on four fake news datasets.","PeriodicalId":191671,"journal":{"name":"2021 9th International Conference on Information and Communication Technology (ICoICT)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 9th International Conference on Information and Communication Technology (ICoICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICoICT52021.2021.9527469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the past decades, information and communication technology has developed rapidly. Therefore, social media has become the main platform for people to share and spread information to others. Although social media has brought a lot of convenience to people, fake news also spread more rapidly than before. This situation has brought a destructive impact to people. In view of this, we propose a hybrid model of Convolutional Neural Network and Long Short-Term Memory for fake news detection. The Convolutional Neural Network model plays the role of extracting representative high-level sequence features whereas the Long Short-Term Memory model encodes the long-term dependencies of the sequence features. Two regularization techniques are applied to reduce the model complexity and to mitigate the overfitting problem. The empirical results demonstrate that the proposed Convolutional Neural Network -Long Short-Term Memory model yields the highest F1-score on four fake news datasets.