Parallel Nonnegative CP Decomposition of Dense Tensors

Grey Ballard, Koby Hayashi, R. Kannan
{"title":"Parallel Nonnegative CP Decomposition of Dense Tensors","authors":"Grey Ballard, Koby Hayashi, R. Kannan","doi":"10.1109/HiPC.2018.00012","DOIUrl":null,"url":null,"abstract":"The CP tensor decomposition is a low-rank approximation of a tensor. We present a distributed-memory parallel algorithm and implementation of an alternating optimization method for computing a CP decomposition of dense tensors that can enforce nonnegativity of the computed low-rank factors. The principal task is to parallelize the Matricized-Tensor Times Khatri-Rao Product (MTTKRP) bottleneck subcomputation. The algorithm is computation efficient, using dimension trees to avoid redundant computation across MTTKRPs within the alternating method. Our approach is also communication efficient, using a data distribution and parallel algorithm across a multidimensional processor grid that can be tuned to minimize communication. We benchmark our software on synthetic as well as hyperspectral image and neuroscience dynamic functional connectivity data, demonstrating that our algorithm scales well to 100s of nodes (up to 4096 cores) and is faster and more general than the currently available parallel software.","PeriodicalId":113335,"journal":{"name":"2018 IEEE 25th International Conference on High Performance Computing (HiPC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 25th International Conference on High Performance Computing (HiPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPC.2018.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

The CP tensor decomposition is a low-rank approximation of a tensor. We present a distributed-memory parallel algorithm and implementation of an alternating optimization method for computing a CP decomposition of dense tensors that can enforce nonnegativity of the computed low-rank factors. The principal task is to parallelize the Matricized-Tensor Times Khatri-Rao Product (MTTKRP) bottleneck subcomputation. The algorithm is computation efficient, using dimension trees to avoid redundant computation across MTTKRPs within the alternating method. Our approach is also communication efficient, using a data distribution and parallel algorithm across a multidimensional processor grid that can be tuned to minimize communication. We benchmark our software on synthetic as well as hyperspectral image and neuroscience dynamic functional connectivity data, demonstrating that our algorithm scales well to 100s of nodes (up to 4096 cores) and is faster and more general than the currently available parallel software.
密集张量的并行非负CP分解
CP张量分解是张量的低秩近似。我们提出了一种分布式内存并行算法,并实现了一种交替优化方法,用于计算密集张量的CP分解,可以强制计算出的低秩因子的非负性。主要任务是并行化矩阵张量乘以Khatri-Rao积(MTTKRP)瓶颈子计算。该算法计算效率高,利用维度树避免了交替方法中跨mttkrp的冗余计算。我们的方法还具有通信效率,使用跨多维处理器网格的数据分布和并行算法,可以调优以最小化通信。我们在合成、高光谱图像和神经科学动态功能连接数据上对我们的软件进行了基准测试,证明我们的算法可以很好地扩展到100个节点(最多4096个核心),并且比目前可用的并行软件更快、更通用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信