Forecasting with Approximate Dynamic Factor Models: The Role of Non-Pervasive Shocks

Matteo Luciani
{"title":"Forecasting with Approximate Dynamic Factor Models: The Role of Non-Pervasive Shocks","authors":"Matteo Luciani","doi":"10.2139/ssrn.1925807","DOIUrl":null,"url":null,"abstract":"This paper studies the role of non-pervasive shocks when forecasting with factor models. To this end, we first introduce a new model that incorporates the effects of non-pervasive shocks, an Approximate Dynamic Factor Model with a sparse model for the idiosyncratic component. Then, we test the forecasting performance of this model both in simulations, and on a large panel of US quarterly data. We find that, when the goal is to forecast a disaggregated variable, which is usually affected by regional or sectorial shocks, it is useful to capture the dynamics generated by non-pervasive shocks; however, when the goal is to forecast an aggregate variable, which responds primarily to macroeconomic, i.e. pervasive, shocks, accounting for non-pervasive shocks is not useful.","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1925807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper studies the role of non-pervasive shocks when forecasting with factor models. To this end, we first introduce a new model that incorporates the effects of non-pervasive shocks, an Approximate Dynamic Factor Model with a sparse model for the idiosyncratic component. Then, we test the forecasting performance of this model both in simulations, and on a large panel of US quarterly data. We find that, when the goal is to forecast a disaggregated variable, which is usually affected by regional or sectorial shocks, it is useful to capture the dynamics generated by non-pervasive shocks; however, when the goal is to forecast an aggregate variable, which responds primarily to macroeconomic, i.e. pervasive, shocks, accounting for non-pervasive shocks is not useful.
近似动态因子模型预测:非普适冲击的作用
本文研究了非普适冲击在因子模型预测中的作用。为此,我们首先引入了一个包含非普遍冲击影响的新模型,这是一个近似动态因子模型,具有特质成分的稀疏模型。然后,我们在模拟和美国季度数据的大型面板上测试了该模型的预测性能。我们发现,当目标是预测一个通常受区域或部门冲击影响的分解变量时,捕捉非普遍性冲击产生的动态是有用的;然而,当目标是预测一个主要对宏观经济(即普遍冲击)作出反应的总变量时,考虑非普遍冲击是没有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信