C. Castiello, Corrado Mencar, M. Lucarelli, Franz Rothlauf
{"title":"Efficiency improvement of DC∗ through a Genetic Guidance","authors":"C. Castiello, Corrado Mencar, M. Lucarelli, Franz Rothlauf","doi":"10.1109/FUZZ-IEEE.2017.8015585","DOIUrl":null,"url":null,"abstract":"DC∗ is a method for generating interpretable fuzzy information granules from pre-classified data. It is based on the subsequent application of LVQ1 for data compression and an ad-hoc procedure based on A∗ to represent data with the minimum number of fuzzy information granules satisfying some interpretability constraints. While being efficient in tackling several problems, the A∗ procedure included in DC∗ may happen to require a long computation time because the A∗ algorithm has exponential time complexity in the worst case. In this paper, we approach the problem of driving the search process of A∗ by suggesting a close-to-optimal solution that is produced through a Genetic Algorithm (GA). Experimental evaluations show that, by driving the A∗ algorithm embodied in DC∗ with a GA solution, the time required to perform data granulation can be reduced by at least 45% and up to 99%.","PeriodicalId":408343,"journal":{"name":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2017.8015585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
DC∗ is a method for generating interpretable fuzzy information granules from pre-classified data. It is based on the subsequent application of LVQ1 for data compression and an ad-hoc procedure based on A∗ to represent data with the minimum number of fuzzy information granules satisfying some interpretability constraints. While being efficient in tackling several problems, the A∗ procedure included in DC∗ may happen to require a long computation time because the A∗ algorithm has exponential time complexity in the worst case. In this paper, we approach the problem of driving the search process of A∗ by suggesting a close-to-optimal solution that is produced through a Genetic Algorithm (GA). Experimental evaluations show that, by driving the A∗ algorithm embodied in DC∗ with a GA solution, the time required to perform data granulation can be reduced by at least 45% and up to 99%.