Non-Line-of-Sight Identification for UWB Indoor Positioning Systems using Support Vector Machines

Jeppe Bro Kristensen, Michel Massanet Ginard, O. K. Jensen, M. Shen
{"title":"Non-Line-of-Sight Identification for UWB Indoor Positioning Systems using Support Vector Machines","authors":"Jeppe Bro Kristensen, Michel Massanet Ginard, O. K. Jensen, M. Shen","doi":"10.1109/IEEE-IWS.2019.8804072","DOIUrl":null,"url":null,"abstract":"This paper presents a Non-Line-Of-Sight (NLOS) identification approach based on machine learning algorithms for ultra wide band positioning systems. The identification of NLOS conditions is crucial for positioning using trilateration as NLOS introduces positive biases in the calculated distances. The proposed method is based on the classification of the Channel Impulse Responses using Fisher’s Linear Discriminant and Support Vector Machines (SVM). The proposed approach has been validated by measurements in both an anechoic chamber where known reflections and obstacles are introduced and in a basement corridor as real environment scenario with more than 500 and 700 measured data sets for training, respectively. Results show an average identification accuracy of 92% for the case using SVM in the anechoic chamber and almost 100% for Fisher’s discriminant combined with SVM for the corridor scenario.","PeriodicalId":306297,"journal":{"name":"2019 IEEE MTT-S International Wireless Symposium (IWS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE MTT-S International Wireless Symposium (IWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEE-IWS.2019.8804072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

This paper presents a Non-Line-Of-Sight (NLOS) identification approach based on machine learning algorithms for ultra wide band positioning systems. The identification of NLOS conditions is crucial for positioning using trilateration as NLOS introduces positive biases in the calculated distances. The proposed method is based on the classification of the Channel Impulse Responses using Fisher’s Linear Discriminant and Support Vector Machines (SVM). The proposed approach has been validated by measurements in both an anechoic chamber where known reflections and obstacles are introduced and in a basement corridor as real environment scenario with more than 500 and 700 measured data sets for training, respectively. Results show an average identification accuracy of 92% for the case using SVM in the anechoic chamber and almost 100% for Fisher’s discriminant combined with SVM for the corridor scenario.
基于支持向量机的超宽带室内定位系统非视距识别
提出了一种基于机器学习算法的超宽带定位系统非视距识别方法。NLOS条件的识别对于使用三边定位至关重要,因为NLOS在计算距离中引入了正偏差。该方法基于Fisher线性判别和支持向量机(SVM)对信道脉冲响应进行分类。所提出的方法已经通过在暗室(其中引入了已知的反射和障碍物)和在地下室走廊(作为真实环境场景)中分别使用超过500和700个测量数据集进行训练的测量来验证。结果表明,在暗室中使用支持向量机的平均识别准确率为92%,而在走廊场景中,Fisher判别法结合支持向量机的平均识别准确率几乎为100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信