Hierarchical Classification of Financial Transactions Through Context-Fusion of Transformer-based Embeddings and Taxonomy-aware Attention Layer

A. Busson, Rafael H. Rocha, Rennan Gaio, Rafael Miceli, Ivan Pereira, D. D. S. Moraes, S. Colcher, Á. Veiga, Bruno Rizzi, Francisco Evangelista, Leandro Santos, Fellipe Marques, Marcos Rabaioli, Diego Feldberg, Debora Mattos, João Pasqua, Diogo G. Dias
{"title":"Hierarchical Classification of Financial Transactions Through Context-Fusion of Transformer-based Embeddings and Taxonomy-aware Attention Layer","authors":"A. Busson, Rafael H. Rocha, Rennan Gaio, Rafael Miceli, Ivan Pereira, D. D. S. Moraes, S. Colcher, Á. Veiga, Bruno Rizzi, Francisco Evangelista, Leandro Santos, Fellipe Marques, Marcos Rabaioli, Diego Feldberg, Debora Mattos, João Pasqua, Diogo G. Dias","doi":"10.5753/bwaif.2023.229322","DOIUrl":null,"url":null,"abstract":"This work proposes the Two-headed DragoNet, a Transformer-based model for hierarchical multi-label classification of financial transactions. Our model is based on a stack of Transformers encoder layers that generates contextual embeddings from two short textual descriptors (merchant name and business activity), followed by a Context Fusion layer and two output heads that classify transactions according to a hierarchical two-level taxonomy (macro and micro categories). Finally, our proposed Taxonomy-aware Attention Layer corrects predictions that break categorical hierarchy rules defined in the given taxonomy. Our proposal outperforms classical machine learning methods in experiments of macro-category classification by achieving an F1-score of 93% on a card dataset and 95% on a current account dataset.","PeriodicalId":101527,"journal":{"name":"Anais do II Brazilian Workshop on Artificial Intelligence in Finance (BWAIF 2023)","volume":"48 22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do II Brazilian Workshop on Artificial Intelligence in Finance (BWAIF 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/bwaif.2023.229322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposes the Two-headed DragoNet, a Transformer-based model for hierarchical multi-label classification of financial transactions. Our model is based on a stack of Transformers encoder layers that generates contextual embeddings from two short textual descriptors (merchant name and business activity), followed by a Context Fusion layer and two output heads that classify transactions according to a hierarchical two-level taxonomy (macro and micro categories). Finally, our proposed Taxonomy-aware Attention Layer corrects predictions that break categorical hierarchy rules defined in the given taxonomy. Our proposal outperforms classical machine learning methods in experiments of macro-category classification by achieving an F1-score of 93% on a card dataset and 95% on a current account dataset.
基于变压器嵌入和分类感知关注层的金融交易分层分类
这项工作提出了双头DragoNet,一个基于transformer的金融交易分层多标签分类模型。我们的模型基于一堆transformer编码器层,这些编码器层从两个简短的文本描述符(商家名称和业务活动)生成上下文嵌入,然后是一个Context Fusion层和两个输出头,它们根据分层的两级分类法(宏观和微观类别)对交易进行分类。最后,我们提出的分类感知注意层纠正了打破给定分类法中定义的分类层次规则的预测。我们的建议在宏观类别分类实验中优于经典机器学习方法,在卡片数据集上实现了93%的f1得分,在经常账户数据集上实现了95%的f1得分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信