The Tracking Dynamical Evolutionary Algorithm for Dynamic Environments

Suming Liu, Qiang Zhao, Yumei Zhang
{"title":"The Tracking Dynamical Evolutionary Algorithm for Dynamic Environments","authors":"Suming Liu, Qiang Zhao, Yumei Zhang","doi":"10.1109/IUCE.2009.149","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed the Tracking Dynamical Evolutionary Algorithm (TDEA) that can efficiently locate and track the optimal solution in a dynamically changing environment. In TDEA, the particle's structure is different from traditional DEA. Each particle's knowledge is applied an \"evaporation constant\" to gradually weaken the knowledge's validity. Through this mechanism, the knowledge of each particle will be gradually updated in a dynamically changing environment. Compared with the traditional DEA, TDEA can quickly converge to the area of the goal and maintain the shortest distance from the goal.","PeriodicalId":153560,"journal":{"name":"2009 International Symposium on Intelligent Ubiquitous Computing and Education","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Symposium on Intelligent Ubiquitous Computing and Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IUCE.2009.149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we proposed the Tracking Dynamical Evolutionary Algorithm (TDEA) that can efficiently locate and track the optimal solution in a dynamically changing environment. In TDEA, the particle's structure is different from traditional DEA. Each particle's knowledge is applied an "evaporation constant" to gradually weaken the knowledge's validity. Through this mechanism, the knowledge of each particle will be gradually updated in a dynamically changing environment. Compared with the traditional DEA, TDEA can quickly converge to the area of the goal and maintain the shortest distance from the goal.
动态环境下的跟踪动态进化算法
本文提出了跟踪动态进化算法(TDEA),该算法能够在动态变化的环境中有效地定位和跟踪最优解。在TDEA中,粒子的结构与传统DEA不同。对每个粒子的知识施加一个“蒸发常数”,逐渐削弱知识的有效性。通过这种机制,每个粒子的知识将在动态变化的环境中逐渐更新。与传统的DEA相比,TDEA可以快速收敛到目标区域,并保持与目标的最短距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信