Jiang Zhang, Changhe Yang, Yanda Li, Li Chen, Xiaoru Yuan
{"title":"LBVis: Interactive Dynamic Load Balancing Visualization for Parallel Particle Tracing","authors":"Jiang Zhang, Changhe Yang, Yanda Li, Li Chen, Xiaoru Yuan","doi":"10.1109/PacificVis48177.2020.1029","DOIUrl":null,"url":null,"abstract":"We propose an interactive visual analytical approach to exploring and diagnosing the dynamic load balance (data and task partition) process of parallel particle tracing in flow visualization. To understand the complex nature of the parallel processes, it is necessary to integrate the information of the behaviors and patterns of the computing processes, data changes and movements, task status and exchanges, and gain the insight of the relationships among them. In our proposed approach, the data and task behaviors are visualized through a graph with a fine-designed layout, in which node glyphs are dedicated to showing the status of processes and the links represent the data or task transfer between different computation rounds and processes. User interactions are supported to facilitate the exploration of performance analysis. We provide a case study to demonstrate that the proposed approach enables users to identify the bottlenecks during this process, and thus help optimize the related algorithms.","PeriodicalId":322092,"journal":{"name":"2020 IEEE Pacific Visualization Symposium (PacificVis)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis48177.2020.1029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We propose an interactive visual analytical approach to exploring and diagnosing the dynamic load balance (data and task partition) process of parallel particle tracing in flow visualization. To understand the complex nature of the parallel processes, it is necessary to integrate the information of the behaviors and patterns of the computing processes, data changes and movements, task status and exchanges, and gain the insight of the relationships among them. In our proposed approach, the data and task behaviors are visualized through a graph with a fine-designed layout, in which node glyphs are dedicated to showing the status of processes and the links represent the data or task transfer between different computation rounds and processes. User interactions are supported to facilitate the exploration of performance analysis. We provide a case study to demonstrate that the proposed approach enables users to identify the bottlenecks during this process, and thus help optimize the related algorithms.