Feature-based UKF-SLAM Using Imaging Sonar in Underwater Structured Environment

Qiang Zhang, Bocheng Niu, Wen Zhang, Ye Li
{"title":"Feature-based UKF-SLAM Using Imaging Sonar in Underwater Structured Environment","authors":"Qiang Zhang, Bocheng Niu, Wen Zhang, Ye Li","doi":"10.1109/USYS.2018.8778989","DOIUrl":null,"url":null,"abstract":"This paper presents a simultaneous localization and mapping(SLAM) algorithm towards underwater structured environment using Mechanical Scanning Imaging Sonar(MSIS). An adaptive Hough transform integrating with the method of Random Sampling Consensus(RANSAC) is used to extract the line feature form sonar scanning data and build the geometric feature map in this paper. The UKF-SLAM algorithm estimates the state of underwater vehicle’s pose by fusion of multi-sensor data and the extracted line feature. To validate the algorithm, a simulation on MATLAB using Spanish abandoned marina dataset is tested, which shows this algorithm can suppress the divergence effectively and locate the vehicle accurately.","PeriodicalId":299885,"journal":{"name":"2018 IEEE 8th International Conference on Underwater System Technology: Theory and Applications (USYS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 8th International Conference on Underwater System Technology: Theory and Applications (USYS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/USYS.2018.8778989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a simultaneous localization and mapping(SLAM) algorithm towards underwater structured environment using Mechanical Scanning Imaging Sonar(MSIS). An adaptive Hough transform integrating with the method of Random Sampling Consensus(RANSAC) is used to extract the line feature form sonar scanning data and build the geometric feature map in this paper. The UKF-SLAM algorithm estimates the state of underwater vehicle’s pose by fusion of multi-sensor data and the extracted line feature. To validate the algorithm, a simulation on MATLAB using Spanish abandoned marina dataset is tested, which shows this algorithm can suppress the divergence effectively and locate the vehicle accurately.
水下结构环境下基于成像声纳特征的UKF-SLAM
提出了一种基于机械扫描成像声呐(MSIS)的水下结构环境同步定位与制图算法。本文将自适应霍夫变换与随机抽样一致性(RANSAC)方法相结合,提取声纳扫描数据中的线特征,并构建几何特征映射。UKF-SLAM算法通过融合多传感器数据和提取的直线特征来估计水下机器人的姿态状态。为了验证该算法的有效性,利用西班牙废弃码头数据集在MATLAB上进行了仿真,结果表明该算法能够有效抑制发散,准确定位车辆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信