Detection of brain tumor in medical images

A. Kharrat, Nacéra Benamrane, M. Ben Messaoud, M. Abid
{"title":"Detection of brain tumor in medical images","authors":"A. Kharrat, Nacéra Benamrane, M. Ben Messaoud, M. Abid","doi":"10.1109/ICSCS.2009.5412577","DOIUrl":null,"url":null,"abstract":"This paper introduces an efficient detection of brain tumor from cerebral MRI images. The methodology consists of three steps: enhancement, segmentation and classification. To improve the quality of images and limit the risk of distinct regions fusion in the segmentation phase an enhancement process is applied. We adopt mathematical morphology to increase the contrast in MRI images. Then we apply Wavelet Transform in the segmentation process to decompose MRI images. At last, the k-means algorithm is implemented to extract the suspicious regions or tumors. Some of experimental results on brain images show the feasibility and the performance of the proposed approach.","PeriodicalId":126072,"journal":{"name":"2009 3rd International Conference on Signals, Circuits and Systems (SCS)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"158","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 3rd International Conference on Signals, Circuits and Systems (SCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCS.2009.5412577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 158

Abstract

This paper introduces an efficient detection of brain tumor from cerebral MRI images. The methodology consists of three steps: enhancement, segmentation and classification. To improve the quality of images and limit the risk of distinct regions fusion in the segmentation phase an enhancement process is applied. We adopt mathematical morphology to increase the contrast in MRI images. Then we apply Wavelet Transform in the segmentation process to decompose MRI images. At last, the k-means algorithm is implemented to extract the suspicious regions or tumors. Some of experimental results on brain images show the feasibility and the performance of the proposed approach.
医学图像中脑肿瘤的检测
本文介绍了一种从脑MRI图像中有效检测脑肿瘤的方法。该方法包括三个步骤:增强、分割和分类。为了提高图像的质量和限制在分割阶段不同区域融合的风险,应用了增强过程。我们采用数学形态学来提高MRI图像的对比度。然后在分割过程中应用小波变换对MRI图像进行分解。最后,采用k-means算法提取可疑区域或肿瘤。一些脑图像的实验结果表明了该方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信