Robust STATCOM control for the enhancement of fault ride-through capability of fixed speed wind generators

Md. Jahangir Hossain, H. Pota, V. Ugrinovskii, R. Ramos
{"title":"Robust STATCOM control for the enhancement of fault ride-through capability of fixed speed wind generators","authors":"Md. Jahangir Hossain, H. Pota, V. Ugrinovskii, R. Ramos","doi":"10.1109/CCA.2009.5281072","DOIUrl":null,"url":null,"abstract":"In this paper, a novel robust controller for a Static Synchronous Compensator (STATCOM) is presented to enhance the fault ride-through (FRT) capability of fixed speed induction generators (FSIGs), the most common type of generators that can be found in wind farms. The effects of STATCOM rating and wind farm integration on FRT capability of FSIGs are studied analytically using the power-voltage and torque-slip relationships as well as through simulations. The wind generator is a highly nonlinear system, which is modelled in this work as a linear part plus a nonlinear part, the nonlinear term being the Cauchy remainder term in the Taylor series expansion and of the equations used to model the wind farm. Bounds derived for this Cauchy remainder term are used to define an uncertain linear model for which a robust control design is performed. The controller resulting from this robust design provides an acceptable performance over a wide range of conditions needed to operate the wind farm during severe faults. The performance of the designed controller is demonstrated by large disturbance simulations on a test system.","PeriodicalId":294950,"journal":{"name":"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2009.5281072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

In this paper, a novel robust controller for a Static Synchronous Compensator (STATCOM) is presented to enhance the fault ride-through (FRT) capability of fixed speed induction generators (FSIGs), the most common type of generators that can be found in wind farms. The effects of STATCOM rating and wind farm integration on FRT capability of FSIGs are studied analytically using the power-voltage and torque-slip relationships as well as through simulations. The wind generator is a highly nonlinear system, which is modelled in this work as a linear part plus a nonlinear part, the nonlinear term being the Cauchy remainder term in the Taylor series expansion and of the equations used to model the wind farm. Bounds derived for this Cauchy remainder term are used to define an uncertain linear model for which a robust control design is performed. The controller resulting from this robust design provides an acceptable performance over a wide range of conditions needed to operate the wind farm during severe faults. The performance of the designed controller is demonstrated by large disturbance simulations on a test system.
鲁棒STATCOM控制提高定速风力发电机故障穿越能力
本文提出了一种用于静态同步补偿器(STATCOM)的鲁棒控制器,以提高风电场中最常见的固定转速感应发电机(fsig)的故障穿越能力。通过功率-电压和转矩-滑移关系以及仿真,分析研究了STATCOM等级和风电场集成对fsig FRT能力的影响。风力发电机是一个高度非线性的系统,在这项工作中,它被建模为一个线性部分加上一个非线性部分,非线性项是泰勒级数展开式中的柯西余项和用于对风电场建模的方程。由柯西余项导出的边界用于定义一个不确定的线性模型,并对该模型执行鲁棒控制设计。由这种稳健设计产生的控制器在严重故障期间运行风电场所需的广泛条件下提供了可接受的性能。在测试系统上进行了大扰动仿真,验证了所设计控制器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信