Jiagen, Jason Ding, S. Cheung, Chin-Woo Tan, P. Varaiya
{"title":"Signal processing of sensor node data for vehicle detection","authors":"Jiagen, Jason Ding, S. Cheung, Chin-Woo Tan, P. Varaiya","doi":"10.1109/ITSC.2004.1398874","DOIUrl":null,"url":null,"abstract":"We describe an algorithm and experimental work for vehicle detection using sensor node data. Both acoustic and magnetic signals are processed for vehicle detection. We propose a real-time vehicle detection algorithm called the adaptive threshold algorithm (ATA). The algorithm first computes the time-domain energy distribution curve and then slices the energy curve using a threshold updated adaptively by some decision states. Finally, the hard decision results from threshold slicing are passed to a finite-state machine, which makes the final vehicle detection decision. Real-time tests and offline simulations both demonstrate that the proposed algorithm is effective.","PeriodicalId":239269,"journal":{"name":"Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No.04TH8749)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"107","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No.04TH8749)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2004.1398874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 107
Abstract
We describe an algorithm and experimental work for vehicle detection using sensor node data. Both acoustic and magnetic signals are processed for vehicle detection. We propose a real-time vehicle detection algorithm called the adaptive threshold algorithm (ATA). The algorithm first computes the time-domain energy distribution curve and then slices the energy curve using a threshold updated adaptively by some decision states. Finally, the hard decision results from threshold slicing are passed to a finite-state machine, which makes the final vehicle detection decision. Real-time tests and offline simulations both demonstrate that the proposed algorithm is effective.