Neuro-, Genetic-, and Quantum Inspired Evolving Intelligent Systems

Nikola Kasabov
{"title":"Neuro-, Genetic-, and Quantum Inspired Evolving Intelligent Systems","authors":"Nikola Kasabov","doi":"10.1109/ISEFS.2006.251165","DOIUrl":null,"url":null,"abstract":"This paper discusses opportunities and challenges for the creation of evolving artificial neural network (ANN) and more general computational intelligence (CI) models inspired by principles at different levels of information processing in the brain - neuronal-, genetic-, and quantum - and mainly the issues related to the integration of these principles into more powerful and accurate ANN models. A particular type of ANN, evolving connectionist systems (ECOS), is used to illustrate this approach. ECOS evolve their structure and functionality through continuous learning from data and facilitate data and knowledge integration and knowledge elucidation. ECOS gain inspiration from the evolving processes in the brain. Evolving fuzzy neural networks and evolving spiking neural networks are presented as examples. With more genetic information available now, it becomes possible to integrate the gene and the neuronal information into neuro-genetic models and to use them for a better understanding of complex brain processes. Further down in the information processing hierarchy are the quantum processes. Quantum inspired ANN may help solve efficiently the hardest computational problems. It may be possible to integrate quantum principles into brain-gene inspired ANN models for a faster and more accurate modeling. All the topics above are illustrated with some contemporary solutions, but many more open questions and challenges are raised and directions for further research outlined","PeriodicalId":269492,"journal":{"name":"2006 International Symposium on Evolving Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Symposium on Evolving Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEFS.2006.251165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper discusses opportunities and challenges for the creation of evolving artificial neural network (ANN) and more general computational intelligence (CI) models inspired by principles at different levels of information processing in the brain - neuronal-, genetic-, and quantum - and mainly the issues related to the integration of these principles into more powerful and accurate ANN models. A particular type of ANN, evolving connectionist systems (ECOS), is used to illustrate this approach. ECOS evolve their structure and functionality through continuous learning from data and facilitate data and knowledge integration and knowledge elucidation. ECOS gain inspiration from the evolving processes in the brain. Evolving fuzzy neural networks and evolving spiking neural networks are presented as examples. With more genetic information available now, it becomes possible to integrate the gene and the neuronal information into neuro-genetic models and to use them for a better understanding of complex brain processes. Further down in the information processing hierarchy are the quantum processes. Quantum inspired ANN may help solve efficiently the hardest computational problems. It may be possible to integrate quantum principles into brain-gene inspired ANN models for a faster and more accurate modeling. All the topics above are illustrated with some contemporary solutions, but many more open questions and challenges are raised and directions for further research outlined
神经、遗传和量子启发的进化智能系统
本文讨论了创建不断发展的人工神经网络(ANN)和更通用的计算智能(CI)模型的机遇和挑战,这些模型受到大脑中不同层次信息处理原理(神经元、遗传和量子)的启发,主要是与将这些原理集成到更强大、更准确的人工神经网络模型中相关的问题。一种特殊类型的人工神经网络,进化连接系统(ECOS),被用来说明这种方法。ECOS通过不断从数据中学习来发展其结构和功能,并促进数据和知识的集成和知识阐明。ECOS从大脑的进化过程中获得灵感。以演化模糊神经网络和演化尖峰神经网络为例。现在有了更多的遗传信息,就有可能将基因和神经元信息整合到神经遗传模型中,并利用它们更好地理解复杂的大脑过程。在信息处理层次结构中更进一步的是量子过程。受量子启发的人工神经网络可能有助于有效地解决最难的计算问题。有可能将量子原理整合到大脑基因启发的人工神经网络模型中,以实现更快、更准确的建模。以上所有的主题都用一些当代的解决方案来说明,但提出了更多的开放性问题和挑战,并概述了进一步研究的方向
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信