Synthesis of Lower-Body Human Walking using Trigonometric Spline Method

Altay Zhakatayev, Yuri V. Rogovchenko, M. Pätzold
{"title":"Synthesis of Lower-Body Human Walking using Trigonometric Spline Method","authors":"Altay Zhakatayev, Yuri V. Rogovchenko, M. Pätzold","doi":"10.1109/Humanoids53995.2022.10000253","DOIUrl":null,"url":null,"abstract":"In this work, preliminary results of human motion synthesis are presented. Specifically, a single stride motion (consisting of two steps) of a human lower-body model is obtained. The optimal control problem was reformulated as a nonlinear programming problem using the differential inclusion method. The main goal of this study is to compare the performance of trigonometric and polynomial (B-spline) discretization methods. The obtained results indicate that the trigonometric spline method performs similarly to the B-spline method and results in a smooth motion.","PeriodicalId":180816,"journal":{"name":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Humanoids53995.2022.10000253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, preliminary results of human motion synthesis are presented. Specifically, a single stride motion (consisting of two steps) of a human lower-body model is obtained. The optimal control problem was reformulated as a nonlinear programming problem using the differential inclusion method. The main goal of this study is to compare the performance of trigonometric and polynomial (B-spline) discretization methods. The obtained results indicate that the trigonometric spline method performs similarly to the B-spline method and results in a smooth motion.
用三角样条法合成人体下体行走
在这项工作中,介绍了人体运动合成的初步结果。具体而言,获得人体下半身模型的单步运动(由两步组成)。采用微分包含法将最优控制问题转化为非线性规划问题。本研究的主要目的是比较三角和多项式(b样条)离散化方法的性能。结果表明,三角样条法与b样条法具有相似的性能,可以得到光滑的运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信