Communication optimal parallel multiplication of sparse random matrices

Grey Ballard, A. Buluç, J. Demmel, L. Grigori, Benjamin Lipshitz, O. Schwartz, Sivan Toledo
{"title":"Communication optimal parallel multiplication of sparse random matrices","authors":"Grey Ballard, A. Buluç, J. Demmel, L. Grigori, Benjamin Lipshitz, O. Schwartz, Sivan Toledo","doi":"10.1145/2486159.2486196","DOIUrl":null,"url":null,"abstract":"Parallel algorithms for sparse matrix-matrix multiplication typically spend most of their time on inter-processor communication rather than on computation, and hardware trends predict the relative cost of communication will only increase. Thus, sparse matrix multiplication algorithms must minimize communication costs in order to scale to large processor counts. In this paper, we consider multiplying sparse matrices corresponding to Erdős-Rényi random graphs on distributed-memory parallel machines. We prove a new lower bound on the expected communication cost for a wide class of algorithms. Our analysis of existing algorithms shows that, while some are optimal for a limited range of matrix density and number of processors, none is optimal in general. We obtain two new parallel algorithms and prove that they match the expected communication cost lower bound, and hence they are optimal.","PeriodicalId":353007,"journal":{"name":"Proceedings of the twenty-fifth annual ACM symposium on Parallelism in algorithms and architectures","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the twenty-fifth annual ACM symposium on Parallelism in algorithms and architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2486159.2486196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 103

Abstract

Parallel algorithms for sparse matrix-matrix multiplication typically spend most of their time on inter-processor communication rather than on computation, and hardware trends predict the relative cost of communication will only increase. Thus, sparse matrix multiplication algorithms must minimize communication costs in order to scale to large processor counts. In this paper, we consider multiplying sparse matrices corresponding to Erdős-Rényi random graphs on distributed-memory parallel machines. We prove a new lower bound on the expected communication cost for a wide class of algorithms. Our analysis of existing algorithms shows that, while some are optimal for a limited range of matrix density and number of processors, none is optimal in general. We obtain two new parallel algorithms and prove that they match the expected communication cost lower bound, and hence they are optimal.
通信稀疏随机矩阵的最优并行乘法
稀疏矩阵-矩阵乘法的并行算法通常将大部分时间花在处理器间通信而不是计算上,并且硬件趋势预测通信的相对成本只会增加。因此,稀疏矩阵乘法算法必须最小化通信成本,以便扩展到大处理器数量。在本文中,我们考虑了在分布式内存并行机上Erdős-Rényi随机图对应的稀疏矩阵的乘法问题。我们证明了一大类算法的期望通信代价的一个新的下界。我们对现有算法的分析表明,虽然有些算法对于有限范围的矩阵密度和处理器数量是最优的,但一般来说没有一个是最优的。我们得到了两种新的并行算法,并证明了它们符合期望通信成本的下界,因此它们是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信