An Interactive Musical Prediction System with Mixture Density Recurrent Neural Networks

Charles Patrick Martin, J. Tørresen
{"title":"An Interactive Musical Prediction System with Mixture Density Recurrent Neural Networks","authors":"Charles Patrick Martin, J. Tørresen","doi":"10.5281/zenodo.3672952","DOIUrl":null,"url":null,"abstract":"This paper is about creating digital musical instruments where a predictive neural network model is integrated into the interactive system. Rather than predicting symbolic music (e.g., MIDI notes), we suggest that predicting future control data from the user and precise temporal information can lead to new and interesting interactive possibilities. We propose that a mixture density recurrent neural network (MDRNN) is an appropriate model for this task. The predictions can be used to fill-in control data when the user stops performing, or as a kind of filter on the user's own input. We present an interactive MDRNN prediction server that allows rapid prototyping of new NIMEs featuring predictive musical interaction by recording datasets, training MDRNN models, and experimenting with interaction modes. We illustrate our system with several example NIMEs applying this idea. Our evaluation shows that real-time predictive interaction is viable even on single-board computers and that small models are appropriate for small datasets.","PeriodicalId":161317,"journal":{"name":"New Interfaces for Musical Expression","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Interfaces for Musical Expression","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/zenodo.3672952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper is about creating digital musical instruments where a predictive neural network model is integrated into the interactive system. Rather than predicting symbolic music (e.g., MIDI notes), we suggest that predicting future control data from the user and precise temporal information can lead to new and interesting interactive possibilities. We propose that a mixture density recurrent neural network (MDRNN) is an appropriate model for this task. The predictions can be used to fill-in control data when the user stops performing, or as a kind of filter on the user's own input. We present an interactive MDRNN prediction server that allows rapid prototyping of new NIMEs featuring predictive musical interaction by recording datasets, training MDRNN models, and experimenting with interaction modes. We illustrate our system with several example NIMEs applying this idea. Our evaluation shows that real-time predictive interaction is viable even on single-board computers and that small models are appropriate for small datasets.
混合密度递归神经网络交互式音乐预测系统
本文是关于将预测神经网络模型集成到交互系统中的数字乐器的创建。与其预测象征性音乐(例如,MIDI音符),我们建议预测来自用户的未来控制数据和精确的时间信息可以带来新的有趣的交互可能性。我们提出混合密度递归神经网络(MDRNN)是一个合适的模型。预测可用于在用户停止执行时填充控制数据,或作为用户自己输入的一种过滤器。我们提出了一个交互式MDRNN预测服务器,它允许通过记录数据集、训练MDRNN模型和试验交互模式来快速原型化具有预测性音乐交互的新游戏。我们用几个应用这一理念的游戏例子来说明我们的系统。我们的评估表明,即使在单板计算机上,实时预测交互也是可行的,小型模型适用于小型数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信