{"title":"Solving multiobjective multicast routing problem with a new ant colony optimization approach","authors":"D. Pinto, B. Barán","doi":"10.1145/1168117.1168120","DOIUrl":null,"url":null,"abstract":"This work presents two multiobjective algorithms for Multicast Traffic Engineering. The proposed algorithms are new versions of the Multi-Objective Ant Colony System (MOACS) and the Max-Min Ant System (MMAS), based on Ant Colony Optimization (ACO). Both ACO algorithms simultaneously optimize maximum link utilization and cost of a multicast routing tree, as well as average delay and maximum end-to-end delay, for the first time using an ACO approach. In this way, a set of optimal solutions, know as Pareto set is calculated in only one run of the algorithms, without a priori restrictions. Experimental results show a promising performance of both proposed algorithms for a multicast traffic engineering optimization, when compared to a recently published Multiobjective Multicast Algorithm (MMA), specially designed for Multiobjective Multicast Routing Problems.","PeriodicalId":415618,"journal":{"name":"International Latin American Networking Conference","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Latin American Networking Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1168117.1168120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71
Abstract
This work presents two multiobjective algorithms for Multicast Traffic Engineering. The proposed algorithms are new versions of the Multi-Objective Ant Colony System (MOACS) and the Max-Min Ant System (MMAS), based on Ant Colony Optimization (ACO). Both ACO algorithms simultaneously optimize maximum link utilization and cost of a multicast routing tree, as well as average delay and maximum end-to-end delay, for the first time using an ACO approach. In this way, a set of optimal solutions, know as Pareto set is calculated in only one run of the algorithms, without a priori restrictions. Experimental results show a promising performance of both proposed algorithms for a multicast traffic engineering optimization, when compared to a recently published Multiobjective Multicast Algorithm (MMA), specially designed for Multiobjective Multicast Routing Problems.