An Inmproved Digital Predistortion for Model Simplification of Power Amplifiers

Mingming Gao, Tingyue Bian, Nanjing Chang, Qi Liang
{"title":"An Inmproved Digital Predistortion for Model Simplification of Power Amplifiers","authors":"Mingming Gao, Tingyue Bian, Nanjing Chang, Qi Liang","doi":"10.1109/iWEM53379.2021.9790431","DOIUrl":null,"url":null,"abstract":"The paper introduces a new segmented dual-feedback digital predistortion (DPD) construction for the front-end of a broadband power amplifier (PA). Different from the traditional indirect learning architecture of DPD that directly estimates the post-inverse model of the PA, the proposed architecture firstly simplifies DPD model through the optimal basis set selection module based on compressed sensing (CS). Then the model coefficients are estimated through the behavior model identification algorithm and replicated to the DPD. It can reduce model parameters while reducing the computational complexity and improving the stability of the system to achieve the effect of simplifying the model of the PA. Finally, the effect of improving the linearization of the PA is achieved. To achieve our proposed structure, we use a 20 MHz long-term evolution (LTE) signal to drive a 35 dBm Class-F power amplifier. The experimental results show that the adjacent channel power ratio (ACPR) and the normalized mean squared error (NMSE) is significantly improved compared with no DPD.","PeriodicalId":141204,"journal":{"name":"2021 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iWEM53379.2021.9790431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper introduces a new segmented dual-feedback digital predistortion (DPD) construction for the front-end of a broadband power amplifier (PA). Different from the traditional indirect learning architecture of DPD that directly estimates the post-inverse model of the PA, the proposed architecture firstly simplifies DPD model through the optimal basis set selection module based on compressed sensing (CS). Then the model coefficients are estimated through the behavior model identification algorithm and replicated to the DPD. It can reduce model parameters while reducing the computational complexity and improving the stability of the system to achieve the effect of simplifying the model of the PA. Finally, the effect of improving the linearization of the PA is achieved. To achieve our proposed structure, we use a 20 MHz long-term evolution (LTE) signal to drive a 35 dBm Class-F power amplifier. The experimental results show that the adjacent channel power ratio (ACPR) and the normalized mean squared error (NMSE) is significantly improved compared with no DPD.
一种用于功率放大器模型简化的改进数字预失真
介绍了一种用于宽带功率放大器前端的分段双反馈数字预失真(DPD)结构。与传统的DPD间接学习架构直接估计PA的后逆模型不同,该架构首先通过基于压缩感知(CS)的最优基集选择模块对DPD模型进行简化。然后通过行为模型识别算法估计模型系数,并将其复制到DPD中。它可以在减少模型参数的同时降低计算复杂度,提高系统的稳定性,达到简化PA模型的效果。最后,取得了改善PA线性化的效果。为了实现我们提出的结构,我们使用20 MHz的长期演进(LTE)信号来驱动35 dBm的f类功率放大器。实验结果表明,与无DPD相比,相邻信道功率比(ACPR)和归一化均方误差(NMSE)显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信