Autoencoder-based bone removal algorithm from x-ray images of the lung

Seweryn Kalisz, M. Marczyk
{"title":"Autoencoder-based bone removal algorithm from x-ray images of the lung","authors":"Seweryn Kalisz, M. Marczyk","doi":"10.1109/BIBE52308.2021.9635451","DOIUrl":null,"url":null,"abstract":"The application of machine learning methods in biomedical image analysis has recently become of particular interest to researchers. One of the most common diagnostic methods with low cost and high availability is X-ray imaging. It allows the acquisition of frontal images of the chest, which can be used in the medical diagnosis of various diseases and prognosis. Due to the presence of ribs on the image, some pathologic changes may go unnoticed. The goal of this work is to develop a method, using deep learning techniques, to remove ribs from chest X-ray images. The Bone Suppression dataset, consisting of 35 pairs of standard X-ray and soft-tissue only images, was used to develop the model. COVIDx was used as an external test set. Due to the small number of images in the training cohort, a data augmentation technique was used to generate new, noisy image pairs. A deep learning model using convolutional denoising autoencoder architecture was developed to remove the ribs from the X-ray image. The effects of two image down-sampling methods and learning rate changes were evaluated. The resulting images are characterized by partial or complete suppression of the ribs. It should be noted that the problem was not posed by images of patients suffering from COVID-19, which are characterized by much more complex structures.","PeriodicalId":343724,"journal":{"name":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE52308.2021.9635451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The application of machine learning methods in biomedical image analysis has recently become of particular interest to researchers. One of the most common diagnostic methods with low cost and high availability is X-ray imaging. It allows the acquisition of frontal images of the chest, which can be used in the medical diagnosis of various diseases and prognosis. Due to the presence of ribs on the image, some pathologic changes may go unnoticed. The goal of this work is to develop a method, using deep learning techniques, to remove ribs from chest X-ray images. The Bone Suppression dataset, consisting of 35 pairs of standard X-ray and soft-tissue only images, was used to develop the model. COVIDx was used as an external test set. Due to the small number of images in the training cohort, a data augmentation technique was used to generate new, noisy image pairs. A deep learning model using convolutional denoising autoencoder architecture was developed to remove the ribs from the X-ray image. The effects of two image down-sampling methods and learning rate changes were evaluated. The resulting images are characterized by partial or complete suppression of the ribs. It should be noted that the problem was not posed by images of patients suffering from COVID-19, which are characterized by much more complex structures.
基于自编码器的肺x线图像去骨算法
机器学习方法在生物医学图像分析中的应用最近成为研究人员特别感兴趣的问题。最常见的诊断方法之一是x射线成像,成本低,可用性高。它可以获取胸部的正面图像,可用于各种疾病的医学诊断和预后。由于图像上有肋骨的存在,一些病理变化可能会被忽视。这项工作的目标是开发一种方法,使用深度学习技术,从胸部x光图像中去除肋骨。骨抑制数据集由35对标准x射线和软组织图像组成,用于开发模型。冠状病毒作为外部测试集。由于训练队列中的图像数量较少,因此使用数据增强技术来生成新的噪声图像对。开发了一种基于卷积去噪自编码器架构的深度学习模型,用于去除x射线图像中的肋骨。评估了两种图像降采样方法的效果和学习率的变化。结果图像的特点是部分或完全抑制肋骨。应该指出的是,这个问题不是由COVID-19患者的图像引起的,这些图像的特征是结构复杂得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信