{"title":"Methods for implementation of feedback loops in high speed FPGA applications","authors":"Nima Safari, V. Mauer, S. Gheitanchi","doi":"10.1109/FPL.2014.6927434","DOIUrl":null,"url":null,"abstract":"In many Digital Signal Processing (DSP) modules, increasing the number of pipelining stages to achieve higher throughput may break the module functionality if a feedback-loop exists in the algorithm. This paper addresses a novel algorithmic-level technique to modify implementation of feedback loops to allow deeper pipelining while sustaining the module functionality. An equivalent model for a first-order Infinite Impulse Response (IIR) filter can be obtained by a cascade model including a higher order repeated-pole IIR filter followed by a Finite Impulse Response (FIR) filter. The order of the repeated-pole IIR filters, and hence the number of pipelining stages can be chosen to meet the Fmax requirements. The model is further developed to include a class of mathematical recursive functions to cover many different DSP applications.","PeriodicalId":172795,"journal":{"name":"2014 24th International Conference on Field Programmable Logic and Applications (FPL)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 24th International Conference on Field Programmable Logic and Applications (FPL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL.2014.6927434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In many Digital Signal Processing (DSP) modules, increasing the number of pipelining stages to achieve higher throughput may break the module functionality if a feedback-loop exists in the algorithm. This paper addresses a novel algorithmic-level technique to modify implementation of feedback loops to allow deeper pipelining while sustaining the module functionality. An equivalent model for a first-order Infinite Impulse Response (IIR) filter can be obtained by a cascade model including a higher order repeated-pole IIR filter followed by a Finite Impulse Response (FIR) filter. The order of the repeated-pole IIR filters, and hence the number of pipelining stages can be chosen to meet the Fmax requirements. The model is further developed to include a class of mathematical recursive functions to cover many different DSP applications.