Scalable fault models for diagnosis of synchronous generators

R. Gopinath, C. Kumar, K. Ramachandran
{"title":"Scalable fault models for diagnosis of synchronous generators","authors":"R. Gopinath, C. Kumar, K. Ramachandran","doi":"10.1504/IJISTA.2016.076103","DOIUrl":null,"url":null,"abstract":"In this paper, we experiment with a small working model SWM, where we can inject faults and learn the intelligence about the system, then scale up this fault models to monitor the condition of an actual/complex system, without injecting faults in the actual system. We refer to this approach as scalable fault models. We check the effectiveness of our approach using 3 kVA and 5 kVA synchronous generators to emulate the behaviour of SWM and actual system, respectively. We linearise the features from the SWM and actual system in a higher-dimensional space using locality constrained linear coding LLC to make them linearly separable. Subsequently, the system-independent features are selected using principal component analysis PCA to make the fault models robust across the systems. Support vector machine SVM is used as a back-end classifier. Experiments and results show that proposed LLC-PCA system outperforms the baseline system.","PeriodicalId":420808,"journal":{"name":"Int. J. Intell. Syst. Technol. Appl.","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Intell. Syst. Technol. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJISTA.2016.076103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we experiment with a small working model SWM, where we can inject faults and learn the intelligence about the system, then scale up this fault models to monitor the condition of an actual/complex system, without injecting faults in the actual system. We refer to this approach as scalable fault models. We check the effectiveness of our approach using 3 kVA and 5 kVA synchronous generators to emulate the behaviour of SWM and actual system, respectively. We linearise the features from the SWM and actual system in a higher-dimensional space using locality constrained linear coding LLC to make them linearly separable. Subsequently, the system-independent features are selected using principal component analysis PCA to make the fault models robust across the systems. Support vector machine SVM is used as a back-end classifier. Experiments and results show that proposed LLC-PCA system outperforms the baseline system.
同步发电机故障诊断的可扩展故障模型
在本文中,我们实验了一个小型的工作模型SWM,我们可以在其中注入故障并学习系统的智能,然后将该故障模型扩展到监测实际/复杂系统的状态,而无需在实际系统中注入故障。我们将这种方法称为可伸缩故障模型。我们使用3 kVA和5 kVA同步发电机分别模拟SWM和实际系统的行为来检查我们方法的有效性。我们使用局域约束线性编码LLC将SWM和实际系统在高维空间中的特征线性化,使它们线性可分。然后,利用主成分分析(PCA)选择与系统无关的特征,使故障模型在整个系统中具有鲁棒性。支持向量机(SVM)作为后端分类器。实验和结果表明,所提出的LLC-PCA系统优于基线系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信