Context-Based Question Answering System with Suggested Questions

V. Kumari, Srishti Keshari, Yashvardhan Sharma, Lavika Goel
{"title":"Context-Based Question Answering System with Suggested Questions","authors":"V. Kumari, Srishti Keshari, Yashvardhan Sharma, Lavika Goel","doi":"10.1109/confluence52989.2022.9734207","DOIUrl":null,"url":null,"abstract":"Question Answering and Question Generation are well-researched problems in the field of Natural Language Processing and Information Retrieval. This paper aims to demonstrate the use of novel transformer-based models like BERT, AIBERT, and DistilBERT for Question Answering System and the t5 model for Question Generation. The Question Generation task is integrated with the Question Answering System to suggest relevant questions from the input context using the transfer learning-based model. The question generation model generates questions from the context input by the user and uses different models like DistilBERT, RoBERTa for getting answers from the context. Suggested questions are ranked using BM25 scores to show the most relevant question-answer pairs on the top. The input context can be given as PDF or image(extract texts from image).","PeriodicalId":261941,"journal":{"name":"2022 12th International Conference on Cloud Computing, Data Science & Engineering (Confluence)","volume":"233 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 12th International Conference on Cloud Computing, Data Science & Engineering (Confluence)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/confluence52989.2022.9734207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Question Answering and Question Generation are well-researched problems in the field of Natural Language Processing and Information Retrieval. This paper aims to demonstrate the use of novel transformer-based models like BERT, AIBERT, and DistilBERT for Question Answering System and the t5 model for Question Generation. The Question Generation task is integrated with the Question Answering System to suggest relevant questions from the input context using the transfer learning-based model. The question generation model generates questions from the context input by the user and uses different models like DistilBERT, RoBERTa for getting answers from the context. Suggested questions are ranked using BM25 scores to show the most relevant question-answer pairs on the top. The input context can be given as PDF or image(extract texts from image).
具有建议问题的基于上下文的问答系统
问题回答和问题生成是自然语言处理和信息检索领域中研究较多的问题。本文旨在演示在问答系统中使用新的基于变换的模型,如BERT、AIBERT和DistilBERT,以及在问题生成中使用t5模型。问题生成任务与问答系统集成,使用基于迁移学习的模型从输入上下文中提出相关问题。问题生成模型根据用户输入的上下文生成问题,并使用不同的模型(如蒸馏器、RoBERTa)从上下文获取答案。建议问题使用BM25分数进行排名,以显示最相关的问答对在顶部。输入上下文可以是PDF或图像(从图像中提取文本)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信