Coarse-grained Semantic Characterization of Large Knowledge Resources

Rafael Berlanga Llavori, Antonio Jimeno-Yepes, María Pérez, Indira Lanza-Cruz
{"title":"Coarse-grained Semantic Characterization of Large Knowledge Resources","authors":"Rafael Berlanga Llavori, Antonio Jimeno-Yepes, María Pérez, Indira Lanza-Cruz","doi":"10.1145/3230599.3230616","DOIUrl":null,"url":null,"abstract":"This work presents an experimental study about the automatic assignment of semantic groups to concepts of large knowledge resources (KR) such as DBpedia1 or BabelNet2. Our proposal combines a simple lexico-statistical method for hypernym extraction combined with document and word embeddings extracted from Wikipedia. Results are encouraging and open new directions for improving other tasks related to large KR management like debugging and semantic annotation.","PeriodicalId":448209,"journal":{"name":"Proceedings of the 5th Spanish Conference on Information Retrieval","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Spanish Conference on Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3230599.3230616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents an experimental study about the automatic assignment of semantic groups to concepts of large knowledge resources (KR) such as DBpedia1 or BabelNet2. Our proposal combines a simple lexico-statistical method for hypernym extraction combined with document and word embeddings extracted from Wikipedia. Results are encouraging and open new directions for improving other tasks related to large KR management like debugging and semantic annotation.
大型知识资源的粗粒度语义表征
本文提出了一项关于语义组自动分配到大型知识资源(KR)(如DBpedia1或BabelNet2)概念的实验研究。我们的建议结合了一种简单的词典统计方法来提取超词,并结合了从维基百科中提取的文档和词嵌入。结果令人鼓舞,并为改进调试和语义注释等与大型KR管理相关的其他任务开辟了新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信