SOFTWARE TESTING USING GENETIC ALGORITHMS

Akshat Sharma, Rishon Patani, A. Aggarwal
{"title":"SOFTWARE TESTING USING GENETIC ALGORITHMS","authors":"Akshat Sharma, Rishon Patani, A. Aggarwal","doi":"10.5121/IJCSES.2016.7203","DOIUrl":null,"url":null,"abstract":"This paper presents a set of methods that uses a genetic algorithm for automatic test-data generation in software testing. For several years researchers have proposed several methods for generating test data which had different drawbacks. In this paper, we have presented various Genetic Algorithm (GA) based test methods which will be having different parameters to automate the structural-oriented test data generation on the basis of internal program structure. The factors discovered are used in evaluating the fitness function of Genetic algorithm for selecting the best possible Test method. These methods take the test populations as an input and then evaluate the test cases for that program. This integration will help in improving the overall performance of genetic algorithm in search space exploration and exploitation fields with better convergence rate.","PeriodicalId":415526,"journal":{"name":"International Journal of Computer Science & Engineering Survey","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Science & Engineering Survey","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJCSES.2016.7203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

This paper presents a set of methods that uses a genetic algorithm for automatic test-data generation in software testing. For several years researchers have proposed several methods for generating test data which had different drawbacks. In this paper, we have presented various Genetic Algorithm (GA) based test methods which will be having different parameters to automate the structural-oriented test data generation on the basis of internal program structure. The factors discovered are used in evaluating the fitness function of Genetic algorithm for selecting the best possible Test method. These methods take the test populations as an input and then evaluate the test cases for that program. This integration will help in improving the overall performance of genetic algorithm in search space exploration and exploitation fields with better convergence rate.
使用遗传算法进行软件测试
本文提出了一套利用遗传算法实现软件测试数据自动生成的方法。几年来,研究人员提出了几种生成测试数据的方法,这些方法都有不同的缺点。本文提出了各种基于遗传算法的测试方法,这些方法将具有不同的参数,从而在程序内部结构的基础上自动生成面向结构的测试数据。将发现的因素用于评估遗传算法的适应度函数,以选择最佳的可能测试方法。这些方法将测试人口作为输入,然后评估该程序的测试用例。这种集成将有助于提高遗传算法在搜索空间探索和开发领域的整体性能,并具有更好的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信