Implementation of the Parallel Manipulator Kinematics Direct Problem Solver on a Heterogeneous System

Gorchakov Andrei
{"title":"Implementation of the Parallel Manipulator Kinematics Direct Problem Solver on a Heterogeneous System","authors":"Gorchakov Andrei","doi":"10.1109/EnT50437.2020.9431294","DOIUrl":null,"url":null,"abstract":"The paper considers the implementation of a direct kinematics problem solver using one of the options for the numerical implementation of Kolmogorov's superposition, proposed by Sprecher and modified by Coppen. The idea of the solver is to create a dataset by solving the inverse kinematics problem, training a specific neural network on a high-performance computing cluster, and embedding the trained neural network into a low-power microprocessor that controls the manipulator. Implementation on a heterogeneous system made it possible to reduce the process of collecting a dataset with 2.108 records of to several minutes.","PeriodicalId":129694,"journal":{"name":"2020 International Conference Engineering and Telecommunication (En&T)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference Engineering and Telecommunication (En&T)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EnT50437.2020.9431294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper considers the implementation of a direct kinematics problem solver using one of the options for the numerical implementation of Kolmogorov's superposition, proposed by Sprecher and modified by Coppen. The idea of the solver is to create a dataset by solving the inverse kinematics problem, training a specific neural network on a high-performance computing cluster, and embedding the trained neural network into a low-power microprocessor that controls the manipulator. Implementation on a heterogeneous system made it possible to reduce the process of collecting a dataset with 2.108 records of to several minutes.
异构系统上并联机器人运动学直接求解器的实现
本文考虑了利用Sprecher提出并经Coppen改进的Kolmogorov叠加数值实现的一种选项来实现直接运动学问题求解器。求解器的思想是通过求解逆运动学问题来创建数据集,在高性能计算集群上训练特定的神经网络,并将训练好的神经网络嵌入到控制机械手的低功耗微处理器中。在异构系统上实现可以将收集2.108条记录的数据集的过程减少到几分钟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信