Deep Learning Based Object Recognition in Real Time Images Using Thermal Imaging System

Rohini Goel, Avinash Sharma, Rajiv Kapoor
{"title":"Deep Learning Based Object Recognition in Real Time Images Using Thermal Imaging System","authors":"Rohini Goel, Avinash Sharma, Rajiv Kapoor","doi":"10.3233/apc210215","DOIUrl":null,"url":null,"abstract":"An efficient driver assistance system is essential to avoid mishaps. The collision between the vehicles and objects before vehicle is the one of the principle reason of mishaps that outcomes in terms of diminished safety and higher monetary loss. Researchers are interminably attempting to upgrade the safety means for diminishing the mishap rates. This paper proposes an accurate and proficient technique for identifying objects in front of vehicles utilizing thermal imaging framework. For this purpose, image dataset is obtained with the help of a night vision IR camera. This strategy presents deep network based procedure for recognition of objects in thermal images. The deep network gives the model understanding of real world objects and empowers the object recognition. The real time thermal image database is utilized for the training and validation of deep network. In this work, Faster R-CNN is used to adequately identify objects in real time thermal images. This work can be an incredible help for driver assistance framework. The outcomes exhibits that the proposed work assists to boost public safety with good accuracy.","PeriodicalId":429440,"journal":{"name":"Recent Trends in Intensive Computing","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Trends in Intensive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/apc210215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An efficient driver assistance system is essential to avoid mishaps. The collision between the vehicles and objects before vehicle is the one of the principle reason of mishaps that outcomes in terms of diminished safety and higher monetary loss. Researchers are interminably attempting to upgrade the safety means for diminishing the mishap rates. This paper proposes an accurate and proficient technique for identifying objects in front of vehicles utilizing thermal imaging framework. For this purpose, image dataset is obtained with the help of a night vision IR camera. This strategy presents deep network based procedure for recognition of objects in thermal images. The deep network gives the model understanding of real world objects and empowers the object recognition. The real time thermal image database is utilized for the training and validation of deep network. In this work, Faster R-CNN is used to adequately identify objects in real time thermal images. This work can be an incredible help for driver assistance framework. The outcomes exhibits that the proposed work assists to boost public safety with good accuracy.
基于深度学习的热成像系统实时图像目标识别
有效的驾驶辅助系统对避免事故至关重要。车辆与车前物体的碰撞是事故发生的主要原因之一,其结果是安全性降低和经济损失增加。研究人员正在无休止地尝试升级安全手段,以降低事故率。本文提出了一种利用热成像框架准确、熟练地识别车辆前方目标的技术。为此,利用夜视红外相机获取图像数据集。该策略提出了一种基于深度网络的热图像目标识别方法。深度网络赋予模型对现实世界对象的理解,并赋予对象识别能力。利用实时热图像数据库对深度网络进行训练和验证。在这项工作中,使用更快的R-CNN来充分识别实时热图像中的物体。这项工作可以为驾驶员辅助框架提供不可思议的帮助。结果表明,建议的工作有助于提高公共安全,准确度很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信