Information retrieval using Hellinger distance and sqrt-cos similarity

Shunzhi Zhu, Lizhao Liu, Yan Wang
{"title":"Information retrieval using Hellinger distance and sqrt-cos similarity","authors":"Shunzhi Zhu, Lizhao Liu, Yan Wang","doi":"10.1109/ICCSE.2012.6295217","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a similarity measurement method based on the Hellinger distance and square-root cosine. Then use Hellinger distance as the distance metric for document clustering and a new square-root cosine similarity for query information retrieval. This new similarity/distance also bridges between traditional tf_idf weighting to binary weighting in vector space model. Finally, we conduct a comparison on performance between this method and the one based on Euclidean distance and cosine similarity. And from the results, we clearly observe that the precision and recall are improved by using the sqrt-cos similarity.","PeriodicalId":264063,"journal":{"name":"2012 7th International Conference on Computer Science & Education (ICCSE)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 7th International Conference on Computer Science & Education (ICCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE.2012.6295217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper, we propose a similarity measurement method based on the Hellinger distance and square-root cosine. Then use Hellinger distance as the distance metric for document clustering and a new square-root cosine similarity for query information retrieval. This new similarity/distance also bridges between traditional tf_idf weighting to binary weighting in vector space model. Finally, we conduct a comparison on performance between this method and the one based on Euclidean distance and cosine similarity. And from the results, we clearly observe that the precision and recall are improved by using the sqrt-cos similarity.
基于Hellinger距离和sqrt-cos相似度的信息检索
本文提出了一种基于海灵格距离和平方根余弦的相似性度量方法。然后使用Hellinger距离作为文档聚类的距离度量,并使用新的平方根余弦相似度用于查询信息检索。这种新的相似性/距离在向量空间模型中架起了传统的tf_idf加权与二元加权之间的桥梁。最后,将该方法与基于欧氏距离和余弦相似度的方法进行性能比较。从结果中我们可以清楚地看到,使用sqrt-cos相似度可以提高查准率和查全率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信