A Face Tracker Trajectories Clustering Using Mutual Information

N. Vretos, V. Solachidis, I. Pitas
{"title":"A Face Tracker Trajectories Clustering Using Mutual Information","authors":"N. Vretos, V. Solachidis, I. Pitas","doi":"10.1109/MMSP.2007.4412854","DOIUrl":null,"url":null,"abstract":"In this paper we propose an algorithm for face tracker's trajectories clustering. Our approach is based on the mutual information of the images and more precisely its normalized version (NMI). We make use of 2 color channels from the HSV space (hue and saturation) in order to calculate a 4D joint histogram and therefore calculate the mutual information. In this paper we also develop an algorithm where we apply robust heuristics and make use of a tracker information in order to diminish dimensionality and augment accuracy of our results. It is a supervised clustering algorithm which is therefore used (fuzzy c-means) in order to gather same trajectories and same faces together.","PeriodicalId":225295,"journal":{"name":"2007 IEEE 9th Workshop on Multimedia Signal Processing","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 9th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2007.4412854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we propose an algorithm for face tracker's trajectories clustering. Our approach is based on the mutual information of the images and more precisely its normalized version (NMI). We make use of 2 color channels from the HSV space (hue and saturation) in order to calculate a 4D joint histogram and therefore calculate the mutual information. In this paper we also develop an algorithm where we apply robust heuristics and make use of a tracker information in order to diminish dimensionality and augment accuracy of our results. It is a supervised clustering algorithm which is therefore used (fuzzy c-means) in order to gather same trajectories and same faces together.
基于互信息的人脸跟踪轨迹聚类
本文提出了一种人脸跟踪器轨迹聚类算法。我们的方法是基于图像的互信息,更准确地说是基于图像的标准化版本(NMI)。我们利用HSV空间中的2个颜色通道(色相和饱和度)来计算4D联合直方图,从而计算互信息。在本文中,我们还开发了一种算法,其中我们应用鲁棒启发式并利用跟踪器信息来降低维数并提高结果的准确性。它是一种监督聚类算法,因此使用(模糊c-means)将相同的轨迹和相同的面聚集在一起。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信