Measuring Racial Discrimination in Algorithms

David Arnold, Will Dobbie, Peter Hull
{"title":"Measuring Racial Discrimination in Algorithms","authors":"David Arnold, Will Dobbie, Peter Hull","doi":"10.2139/ssrn.3753043","DOIUrl":null,"url":null,"abstract":"Algorithmic decision-making can lead to discrimination against legally protected groups, but measuring such discrimination is often hampered by a fundamental selection challenge. We develop new quasi-experimental tools to overcome this challenge and measure algorithmic discrimination in pretrial bail decisions. We show that the selection challenge reduces to the challenge of measuring four moments, which can be estimated by extrapolating quasi-experimental variation across as-good-as-randomly assigned decision-makers. Estimates from New York City show that both a sophisticated machine learning algorithm and a simpler regression model discriminate against Black defendants even though defendant race and ethnicity are not included in the training data.","PeriodicalId":166384,"journal":{"name":"PSN: Politics of Race (Topic)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Politics of Race (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3753043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Algorithmic decision-making can lead to discrimination against legally protected groups, but measuring such discrimination is often hampered by a fundamental selection challenge. We develop new quasi-experimental tools to overcome this challenge and measure algorithmic discrimination in pretrial bail decisions. We show that the selection challenge reduces to the challenge of measuring four moments, which can be estimated by extrapolating quasi-experimental variation across as-good-as-randomly assigned decision-makers. Estimates from New York City show that both a sophisticated machine learning algorithm and a simpler regression model discriminate against Black defendants even though defendant race and ethnicity are not included in the training data.
用算法衡量种族歧视
算法决策可能导致对受法律保护群体的歧视,但衡量这种歧视往往受到基本选择挑战的阻碍。我们开发了新的准实验工具来克服这一挑战,并测量审前保释决定中的算法歧视。我们表明,选择挑战减少到测量四个矩的挑战,这可以通过外推准实验变量来估计随机分配的决策者。来自纽约市的估计表明,复杂的机器学习算法和更简单的回归模型都歧视黑人被告,即使被告的种族和民族不包括在训练数据中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信