Visualization of irregular datasets using kernel density estimation function

Janusz Opila, T. Pelech-Pilichowski
{"title":"Visualization of irregular datasets using kernel density estimation function","authors":"Janusz Opila, T. Pelech-Pilichowski","doi":"10.23919/MIPRO.2018.8400037","DOIUrl":null,"url":null,"abstract":"Visualization of empirical data is an important part of knowledge acquirement process. Numerous visualization techniques are thus employed including surface and volume rendering. Usually algorithms of visualization require data to be organized in a regular manner. Unfortunately data accumulated empirically often does not exhibit any internal regularity e.g. due to varying spatial density of samples resulting from natural constraints. In order to cope with this problem several preprocess procedures have been developed including distance-like methods. In the paper are discussed problems connected with data preprocessing for visual data analysis, hybrid data visualization styles using advanced texturing as part of data presentation. For fast prototyping of 3D visual styles and computation of visual examples POVRay with newest version of ScPovPlot3D toolkit has been used.","PeriodicalId":431110,"journal":{"name":"2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MIPRO.2018.8400037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Visualization of empirical data is an important part of knowledge acquirement process. Numerous visualization techniques are thus employed including surface and volume rendering. Usually algorithms of visualization require data to be organized in a regular manner. Unfortunately data accumulated empirically often does not exhibit any internal regularity e.g. due to varying spatial density of samples resulting from natural constraints. In order to cope with this problem several preprocess procedures have been developed including distance-like methods. In the paper are discussed problems connected with data preprocessing for visual data analysis, hybrid data visualization styles using advanced texturing as part of data presentation. For fast prototyping of 3D visual styles and computation of visual examples POVRay with newest version of ScPovPlot3D toolkit has been used.
利用核密度估计函数实现不规则数据集的可视化
经验数据的可视化是知识获取过程的重要组成部分。因此,采用了许多可视化技术,包括表面和体绘制。通常可视化算法要求以规则的方式组织数据。不幸的是,经验积累的数据往往不表现出任何内部规律性,例如,由于自然约束导致的样本空间密度的变化。为了解决这个问题,已经开发了几种预处理程序,包括类距离方法。本文讨论了用于可视化数据分析的数据预处理、将高级纹理作为数据表示部分的混合数据可视化样式等相关问题。为了实现3D视觉样式的快速原型和视觉示例的计算,使用了最新版本的ScPovPlot3D工具包的POVRay。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信