Phase Unwrapping in Correlated Noise for FMCW Lidar Depth Estimation

A. Ulvog, Joshua Rapp, T. Koike-Akino, Hassan Mansour, P. Boufounos, K. Parsons
{"title":"Phase Unwrapping in Correlated Noise for FMCW Lidar Depth Estimation","authors":"A. Ulvog, Joshua Rapp, T. Koike-Akino, Hassan Mansour, P. Boufounos, K. Parsons","doi":"10.1109/ICASSP49357.2023.10095456","DOIUrl":null,"url":null,"abstract":"In frequency-modulated continuous-wave (FMCW) lidar, the distance to an illuminated target is proportional to the beat frequency of the interference signal. Laser phase noise often limits the range accuracy of FMCW lidar, and existing frequency estimation methods make overly simplistic assumptions about the noise model. In this work, we propose an algorithm that performs frequency estimation via phase unwrapping by explicitly accounting for correlations in the phase noise. Given a candidate frequency, we approximately recover the maximum likelihood unwrapping sequence using the Viterbi algorithm and the phase noise statistics. The algorithm then alternates between unwrapping and frequency estimate refinement until convergence. Compared to state-of-the-art alternatives, our algorithm consistently achieves superior performance at long range or with large-linewidth lasers when the signal-to-noise ratio is sufficiently high.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10095456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In frequency-modulated continuous-wave (FMCW) lidar, the distance to an illuminated target is proportional to the beat frequency of the interference signal. Laser phase noise often limits the range accuracy of FMCW lidar, and existing frequency estimation methods make overly simplistic assumptions about the noise model. In this work, we propose an algorithm that performs frequency estimation via phase unwrapping by explicitly accounting for correlations in the phase noise. Given a candidate frequency, we approximately recover the maximum likelihood unwrapping sequence using the Viterbi algorithm and the phase noise statistics. The algorithm then alternates between unwrapping and frequency estimate refinement until convergence. Compared to state-of-the-art alternatives, our algorithm consistently achieves superior performance at long range or with large-linewidth lasers when the signal-to-noise ratio is sufficiently high.
FMCW激光雷达深度估计中相关噪声的相位解包裹
在调频连续波(FMCW)激光雷达中,与被照射目标的距离与干扰信号的频率成正比。激光相位噪声往往限制了FMCW激光雷达的测距精度,现有的频率估计方法对噪声模型的假设过于简单。在这项工作中,我们提出了一种算法,通过明确地考虑相位噪声中的相关性,通过相位展开来进行频率估计。给定候选频率,我们使用Viterbi算法和相位噪声统计近似恢复最大似然展开序列。然后,算法在展开和频率估计改进之间交替进行,直到收敛。与最先进的替代方案相比,当信噪比足够高时,我们的算法在远距离或大线宽激光器中始终保持优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信