Efficient Optimisation of Noisy Fitness Functions with Population-based Evolutionary Algorithms

D. Dang, P. Lehre
{"title":"Efficient Optimisation of Noisy Fitness Functions with Population-based Evolutionary Algorithms","authors":"D. Dang, P. Lehre","doi":"10.1145/2725494.2725508","DOIUrl":null,"url":null,"abstract":"Population-based EAs can optimise pseudo-Boolean functions in expected polynomial time, even when only partial information about the problem is available [7]. In this paper, we show that the approach used to analyse optimisation with partial information extends naturally to optimisation under noise. We consider pseudo-Boolean problems with an additive noise term. Very general conditions on the noise term is derived, under which the EA optimises the noisy function in expected polynomial time. In the case of the Onemax and Leadingones problems, efficient optimisation is even possible when the variance of the noise distribution grows quickly with the problem size.","PeriodicalId":112331,"journal":{"name":"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2725494.2725508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

Population-based EAs can optimise pseudo-Boolean functions in expected polynomial time, even when only partial information about the problem is available [7]. In this paper, we show that the approach used to analyse optimisation with partial information extends naturally to optimisation under noise. We consider pseudo-Boolean problems with an additive noise term. Very general conditions on the noise term is derived, under which the EA optimises the noisy function in expected polynomial time. In the case of the Onemax and Leadingones problems, efficient optimisation is even possible when the variance of the noise distribution grows quickly with the problem size.
基于种群进化算法的噪声适应度函数高效优化
基于种群的ea可以在预期的多项式时间内优化伪布尔函数,即使只有关于问题的部分信息可用。在本文中,我们证明了用于分析具有部分信息的优化的方法自然地扩展到噪声下的优化。考虑具有加性噪声项的伪布尔问题。导出了噪声项的一般条件,在此条件下,EA在期望的多项式时间内对噪声函数进行优化。在Onemax和Leadingones问题的情况下,当噪声分布的方差随着问题的大小而快速增长时,有效的优化甚至是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信