Aly A. Valliani, J. Schwartz, Varun Arvind, A. Taree, Jun S. Kim, Samuel K. Cho
{"title":"Multi-Site Assessment of Pediatric Bone Age Using Deep Learning","authors":"Aly A. Valliani, J. Schwartz, Varun Arvind, A. Taree, Jun S. Kim, Samuel K. Cho","doi":"10.1145/3388440.3412429","DOIUrl":null,"url":null,"abstract":"Pediatric bone age assessment is clinically valuable for the evaluation of a variety of pediatric endocrine and orthopedic conditions. Recent studies have explored automated methods for bone age assessment using machine learning techniques, yielding impressive results. However, many state-of-the-art methods rely on manual, fine-grained segmentation of phalanges and have not been validated on an external hospital site. The purpose of this study was to examine the efficacy of a deep learning algorithm for pediatric bone age assessment without the need for time-intensive segmentation. We utilize a novel training regime to achieve results on par with existing approaches, present a systematic analysis of experimental findings via an ablation study, and evaluate generalizability on an external dataset as a function of training data size. The final optimized model achieves mean absolute error of 7.59 months upon internal validation and 11.02 upon validation with data from an external hospital site.","PeriodicalId":411338,"journal":{"name":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3388440.3412429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Pediatric bone age assessment is clinically valuable for the evaluation of a variety of pediatric endocrine and orthopedic conditions. Recent studies have explored automated methods for bone age assessment using machine learning techniques, yielding impressive results. However, many state-of-the-art methods rely on manual, fine-grained segmentation of phalanges and have not been validated on an external hospital site. The purpose of this study was to examine the efficacy of a deep learning algorithm for pediatric bone age assessment without the need for time-intensive segmentation. We utilize a novel training regime to achieve results on par with existing approaches, present a systematic analysis of experimental findings via an ablation study, and evaluate generalizability on an external dataset as a function of training data size. The final optimized model achieves mean absolute error of 7.59 months upon internal validation and 11.02 upon validation with data from an external hospital site.