Grid graph reachability problems

E. Allender, D. M. Barrington, T. Chakraborty, Samir Datta, Sambuddha Roy
{"title":"Grid graph reachability problems","authors":"E. Allender, D. M. Barrington, T. Chakraborty, Samir Datta, Sambuddha Roy","doi":"10.1109/CCC.2006.22","DOIUrl":null,"url":null,"abstract":"We study the complexity of reachability problems on various classes of grid graphs. Reachability on certain classes of grid graphs gives natural examples of problems that are hard for NC1 under AC0 reductions but are not known to be hard far L; they thus give insight into the structure of L. In addition to explicating the structure of L, another of our goals is to expand the class of digraphs for which connectivity can be solved in logspace, by building on the work of Jakoby et al. (2001), who showed that reachability in series-parallel digraphs is solvable in L. We show that reachability for single-source multiple sink planar dags is solvable in L","PeriodicalId":325664,"journal":{"name":"21st Annual IEEE Conference on Computational Complexity (CCC'06)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st Annual IEEE Conference on Computational Complexity (CCC'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2006.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

We study the complexity of reachability problems on various classes of grid graphs. Reachability on certain classes of grid graphs gives natural examples of problems that are hard for NC1 under AC0 reductions but are not known to be hard far L; they thus give insight into the structure of L. In addition to explicating the structure of L, another of our goals is to expand the class of digraphs for which connectivity can be solved in logspace, by building on the work of Jakoby et al. (2001), who showed that reachability in series-parallel digraphs is solvable in L. We show that reachability for single-source multiple sink planar dags is solvable in L
网格图可达性问题
我们研究了各种网格图的可达性问题的复杂性。某些网格图的可达性给出了在AC0约简下NC1很难但在L上不知道很难的问题的自然例子;除了解释L的结构外,我们的另一个目标是通过建立Jakoby等人(2001)的工作,扩展可在对数空间中求解连性的有向图的类别,他们表明串联-并行有向图的可达性在L中可解。我们表明单源多sink平面标记的可达性在L中可解
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信